CORC  > 自动化研究所  > 中国科学院自动化研究所  > 毕业生  > 博士学位论文
题名仿生机器鱼三维机动与滑翔运动控制研究
作者吴正兴
学位类别工学博士
答辩日期2015-05-27
授予单位中国科学院大学
授予地点中国科学院自动化研究所
导师谭民 ; 喻俊志
关键词仿生机器鱼 仿生机器海豚 CPG 倒游机动 三维机动运动 滑翔运动 Robotic fish robotic dolphin CPG backward swimming highmaneuverability gliding motion
其他题名Three-dimensional maneuvering locomotion and glidering control for the robotic fish
学位专业控制理论与控制工程
中文摘要水下仿生研究主要关注鱼类及鲸豚类高效、高机动的推进方式,为高性能水下航行器的设计和研制提供理论基础及技术支撑,应用前景广阔。本文主要针对仿生系统的机动能力和续航能力,在基于仿生中枢模式发生器(Central Pattern Generator,CPG)的多模态运动控制及优化、机器鱼倒游机动及三维大范围转向机动控制、滑翔机器海豚模块化设计及滑翔运动控制等方面开展研究,主要内容如下: 首先,针对基于Hopf振荡器的CPG模型,构建双边扰动信号,引入相位决定因子,实现了CPG输出信号间相位关系的灵活调节;基于Kane方法构建了机器鱼游动的动力学模型,并采用粒子群优化算法,给出一种CPG关键参数的优化整定方法;参考鳗鲡科鱼类的倒游机动,采用改进的CPG模型,实现了机器鱼的稳定倒游及直游、倒游运动的平滑切换;探讨了CPG关键参数对倒游机动的影响,并给出了机器鱼直游、倒游机动的运动学比较与分析。 其次,通过引入宽扁形偏航头部及多自由度胸鳍机构,给出一种机动型机 器狗鱼的设计方案;结合狗鱼S形起动的形态特征及水动力学知识,建立了多关节链式结构仿生机器鱼的S形起动模型,实现了峰值速度为318.08 ± 9.20°/s及转向误差为1.03 ± 0.48°的S形起动;基于C形起动控制算法,利用头部的偏航运动,机器鱼实现了360°的偏航转向;基于三维动力学分析,机器鱼利用胸鳍转角控制,实现了360°大范围的俯仰及横滚机动转向,体现了良好的三维机动能力。 第三,针对传统机器海豚续航能力较差的问题,将滑翔的理念引入到机器海豚的设计中,给出一种便携式、模块化及高安全性的机器海豚设计思想,以提高其在复杂水域的续航能力和机动能力。滑翔机器海豚采用虎鲸的流线外形,其模块化的设计方案有利于装配、维护和运输;可控的胸鳍及尾鳍机构能够有效地调整俯仰力矩,实现快速的滑翔姿态调整;紧急抛载机构能够避免水草缠挂及杂物阻塞情况下的高额损失;腰关节、尾关节及偏航关节的设计有利于实现高速推进及机动转向。 第四,基于动量及能量方程构建了滑翔机器海豚三维滑翔动力学模型,并详细分析了其纵平面内稳态滑翔运动;采用CFD方法仿真了滑翔机器海豚关键部件的水动力学参数,分析了滑翔机器海豚的流体力学性能;探讨了胸鳍及尾鳍转角对机器海豚滑翔姿态的影响,表明了可控鳍面对姿态调整的有效控制作用;实验验证了机器海豚的稳态滑翔、背腹式推进及胸鳍拍动等运动,证明了仿生机构设计及控制方法的有效性。 最后,对本文工作进行了总结,并指出了需要进一步开展的研究工作。
英文摘要The research of underwater biomimetic robots mainly focuses on the surprised swimming skills of natural fish and dolphins which are characterized by high efficiency and high maneuverability. The research results will provide theoretical basis and technological support for the development of high-performance underwater vehicles. This dissertation mainly concerns the maneuverability and endurance of the biomimetic systems, and deals with the multimodal locomotion control and optimization governed by bio-inspired central pattern generators (CPG), backward swimming and 3-D large-range rational maneuvers of robotic fish, modular design for the gliding robotic dolphin, the analysis and control for a steady gliding motion, etc. The technical contributions of this dissertation are summarized below. Firstly, an improved Hopf-based CPG model through importing a special phase-decided parameter is presented to freely adjust the phase relationship be- tween CPGs’ outputs. Based on Kane’s dynamic method for fishlike swimming, a parameter optimization method has been proposed for the CPG model. More- over, considering the anguilliform swimmer’s backward swimming, we employ the improved CPG controller to realize the backward swimming for a sub-carangiform robotic fish and also investigate the effect on swimming performance from the characteristic parameters in CPGs including frequency, amplitude, and phase relationship. The kinematic comparison of forward and backward swimming of the sub-carangiform robotic fish is also provided. Secondly, a new robotic fish modelled after Esox lucius is designed for 3-D high maneuverability through introducing a broad-flat yaw head and a pair of flexible pectoral mechanism with four degrees of freedom. Considering the morphological characteristics of Esox lucius in S-start and basic principles on fluid dynamics, an S-start control method for a multijoint robotic fish is developed and the robotic fish attains a maximum turning speed of 318.08 ± 9.20°/s and a turning accuracy of 1.03 ± 0.48°. According to the C-start of Esox lucius, a flexible and wide-range yaw turn up to 360° is realized. Moreover, under the propulsive forces and moments from pectoral fins with symmetric or asymmetric pitching and heaving attack angles, the robotic fish can agilely flip in a pitch style and roll a 360° rotation around the swimming directi...
语种中文
其他标识符201218014628022
内容类型学位论文
源URL[http://ir.ia.ac.cn/handle/173211/6696]  
专题毕业生_博士学位论文
推荐引用方式
GB/T 7714
吴正兴. 仿生机器鱼三维机动与滑翔运动控制研究[D]. 中国科学院自动化研究所. 中国科学院大学. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace