题名二维纳米粒子阵列的制备及其拉曼光谱研究; Two-dimensional Assembly of Nanoparticles and Its Application in Raman Spectroscopy
作者李晓伟
学位类别博士
答辩日期2004
授予单位中国科学院长春应用化学研究所
授予地点中国科学院长春应用化学研究所
关键词银纳米粒子 金纳米粒子 自组装 组装阵列 表面增强拉曼光谱 对琉基苯胺 电沉积 结晶紫 吸收光谱
其他题名Two-dimensional Assembly of Nanoparticles and Its Application in Raman Spectroscopy
学位专业物理化学
中文摘要随着纳米科学的迅速发展,金属纳米粒子以其独特的性能己被广泛应用于各学科的研究,由此发展起来的纳米物理、纳米化学、纳米材料和纳米电子学等新兴领域已经成为十分活跃的前沿研究方向。在纳米粒子的许多应用中,如:作为电子和光学器件中的结构组分,表面增强光谱中的基底,生物和化学传感器,都需要把纳米粒子固定在一个基底上构筑成一维,二维或三维有序的结构。本论文通过合成不同性质的金、银纳米粒子,采用自组装技术,在金属,玻璃和导电玻璃的表面成功构筑了有序的纳米结构,并研究由此带来的一系列新颖的光学性质及其作为新型的增强基底在表面增强拉曼光谱中的应用。本论文主要研究内容和结论如下:1、通过合成粒度分布均匀,性能稳定的金属银溶胶,利用自组装技术在玻璃表面成功构筑银纳米粒子的二维亚单层结构,利用UV一visible技术,发现在组装结构中银纳米粒子之间的相互作用对偶极子表面等离子体共振有较大的影响,这也可能意味着相邻银粒子间电磁场的增强与银粒子的偶极子模式间的偶合密切相关。2、利用自组装方法,分别在工T0电极和光滑银基底表面构筑了银纳米粒子有序结构,通过与分子吸附在粗糙银电极表面得到的增强拉曼光谱比较,在有序银纳米粒子组装体中藕联分子的拉曼散射得到很大增强,其特征谱峰的峰位置和强度都有变化。组装体中祸联分子对琉基苯胺(PATP)拉曼散射的增强归因于银粒子和银表面之间的电磁祸合,并且电磁场主要集中在银粒子和银基底表面之间的这一区域,即银粒子的局域等离子体(LSP)与银基底的表面等离子激元(SPP)的祸合作用。3、合成具有不同化学性质的银纳米粒子,利用对琉基苯胺作为祸联分子在光滑银基底表面构筑了Ag/PATP/Ag银纳米粒子二维组装阵列。利用表面增强拉曼光谱技术发现银溶胶中不同性质的银纳米粒子,即银溶胶纳米粒子表面吸附的阴离子对藕联分子与银基底之间的电荷传递有着重要的影响。4、利用表面增强拉曼光谱技术,发现苯功能衍生物:苯硫酚,对琉基苯胺和对苯硫酚在粗糙银电极上有着不同的吸附取向:苯硫酚是直立吸附,对琉基苯胺则是垂直吸附在银表面,而对苯硫酚采取平躺的吸附构像。5、利用电化学沉积法,在对琉基苯胺修饰的光滑的银电极表面构筑了银纳米粒子的有序二维结构,通过与利用自组装方法构筑的银粒子阵列中祸联分子表面增强拉曼光谱的研究比较,发现银离子在吸附层修饰的银电极表面进行电化学沉积可能采取两种机理:在双电层附近,溶液中的阴离子参予了整个过程,银粒子与基底之间存在静电吸引作用;银离子直接在吸附分子的氨基表面还原并成键,然后进一步的生长。6、利用电化学沉积法,在金纳米粒子表面沉积了一层汞,SEM,UV-vis及电化学实验证明在具有修饰层的导电玻璃(PVP一ITO)电极上成功合成了汞包金纳米粒子阵列,将汞电极表面的研究拓展到了分子水平。利用金纳米粒子产生的增强电磁场可以研究吸附在汞包金纳米粒子上的分子的表面增强拉曼光谱,简单分子对琉基苯胺在金纳米粒子阵列及汞包金纳米粒子阵列上采取同样的吸附方式,而复杂分子结晶紫在汞包金纳米粒子上采取一种接近平躺的方式吸附,而在金纳米粒子表面则是倾斜吸附的方式。进一步将汞包金纳米粒子阵列电极应用到分子的现场谱学中,从而为更好的理解汞电极上的电化学过程打下了基础。
语种中文
公开日期2011-01-17 ; 2011-04-28
页码128
内容类型学位论文
源URL[http://ir.ciac.jl.cn/handle/322003/34491]  
专题长春应用化学研究所_长春应用化学研究所知识产出_学位论文
推荐引用方式
GB/T 7714
李晓伟. 二维纳米粒子阵列的制备及其拉曼光谱研究, Two-dimensional Assembly of Nanoparticles and Its Application in Raman Spectroscopy[D]. 中国科学院长春应用化学研究所. 中国科学院长春应用化学研究所. 2004.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace