SELF ADMINISTRATION OF OXYCODONE ALTERS SYNAPTIC PLASTICITY GENE EXPRESSION IN THE HIPPOCAMPUS DIFFERENTIALLY IN MALE ADOLESCENT AND ADULT MICE
Zhang Y ; Brownstein AJ ; Buonora M ; Niikura K ; Ho A ; da Rosa JC ; Kreek MJ ; Ott J
刊名Neuroscience
2015
通讯作者邮箱zhangyo@rockefeller.edu
卷号285期号:1页码:34-46
关键词oxycodone self-administration adult hippocampus adolescent synaptic plasticity gene expression
通讯作者Zhang Y
产权排序4
合作状况国际
中文摘要Abuse and addiction to prescription opioids such as oxycodone (a short-acting Mu opioid receptor (MOP-r) agonist) in adolescence is a pressing public health issue. We have previously shown differences in oxycodone self-administration behaviors between adolescent and adult C57BL/6J mice and expression of striatal neurotransmitter receptor genes, in areas involved in reward. In this study, we aimed to determine whether oxycodone self-administration differentially affects genes regulating synaptic plasticity in the hippocampus of adolescent compared to adult mice, since the hippocampus may be involved in learning aspects associated with chronic drug self administration. Hippocampus was isolated for mRNA analysis from mice that had self administered oxycodone (0.25 mg/kg/infusion) 2 h/day for 14 consecutive days or from yoked saline controls. Gene expression was analyzed with real-time polymerase chain reaction (PCR) using a commercially available “synaptic plasticity” PCR array containing 84 genes. We found that adolescent and adult control mice significantly differed in the expression of several genes in the absence of oxycodone exposure, including those coding for mitogen-activated protein kinase, calcium/calmodulin-dependent protein kinase II gamma subunit, glutamate receptor, ionotropic AMPA2 and metabotropic 5. Chronic oxycodone self administration increased proviral integration site 1 (Pim1) and thymoma viral proto-oncogene 1 mRNA levels compared to controls in both age groups. Both Pim1 and cadherin 2 mRNAs showed a significant combined effect of Drug Condition and Age × Drug Condition. Furthermore, the mRNA levels of both cadherin 2 and cAMP response element modulators showed an experiment-wise significant difference between oxycodone and saline control in adult but not in adolescent mice. Overall, this study demonstrates for the first time that chronic oxycodone self-administration differentially alters synaptic plasticity gene expression in the hippocampus of adolescent and adult mice.
学科主题生理心理学/生物心理学
收录类别SCI
资助信息NIH; Dr. Miriam and Sheldon G. Adelson Medical Research Foundation
原文出处http://www.sciencedirect.com/science/article/pii/S0306452214009609
语种英语
公开日期2015-01-30
内容类型期刊论文
源URL[http://ir.psych.ac.cn/handle/311026/10194]  
专题心理研究所_健康与遗传心理学研究室
推荐引用方式
GB/T 7714
Zhang Y,Brownstein AJ,Buonora M,et al. SELF ADMINISTRATION OF OXYCODONE ALTERS SYNAPTIC PLASTICITY GENE EXPRESSION IN THE HIPPOCAMPUS DIFFERENTIALLY IN MALE ADOLESCENT AND ADULT MICE[J]. Neuroscience,2015,285(1):34-46.
APA Zhang Y.,Brownstein AJ.,Buonora M.,Niikura K.,Ho A.,...&Ott J.(2015).SELF ADMINISTRATION OF OXYCODONE ALTERS SYNAPTIC PLASTICITY GENE EXPRESSION IN THE HIPPOCAMPUS DIFFERENTIALLY IN MALE ADOLESCENT AND ADULT MICE.Neuroscience,285(1),34-46.
MLA Zhang Y,et al."SELF ADMINISTRATION OF OXYCODONE ALTERS SYNAPTIC PLASTICITY GENE EXPRESSION IN THE HIPPOCAMPUS DIFFERENTIALLY IN MALE ADOLESCENT AND ADULT MICE".Neuroscience 285.1(2015):34-46.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace