Regulating microstructure of organic ammonium cations enables interface defect management and stability improvement in 2D/3D perovskite solar cells
Zheng, Haiying1; Dong, Xinhe1; Wu, Weiwei1; Wang, Chao1; Pan, Xu2; Liu, Guozhen2
刊名APPLIED SURFACE SCIENCE
2023-02-01
卷号610
关键词Quaternary ammonium cations Microstructure Defect passivation 2D 3D perovskite solar cells Photovoltaic performance
ISSN号0169-4332
DOI10.1016/j.apsusc.2022.155450
通讯作者Zheng, Haiying(hyzheng@ahu.edu.cn)
英文摘要Two-dimensional (2D) perovskites with tunable spacer cations show considerable photoelectric properties and thus make great application prospect for 2D/3D heterojunction perovskite solar cells (PSCs). Herein, three quaternary ammonium cations (tetraethylammonium, tetrapropylammonium and tetrabutylammonium) with specific microstructure are employed to modify perovskite/hole transport layer interface. The influence of cation configuration on the crystallization, defect density and carrier transport of the 2D/3D films has been system-atically studied. Owing to strong ionic interactions with peovskite crystal terminal, stable 2D perovskite barriers will be formed to block the migration channel of water molecules in air and organic ions in perovskite, leading to the improved stability of PSCs. More importantly, both the positive and negative defects could be effectively passivated attributing to the surfactant and amphoteric properties of quaternary ammonium cations. As a result, the optimal perovskite device modified by tetrabutylammonium shows the best power conversion efficiency (PCE) of 21.92 % with high Voc of 1.17 V and superior humidity and thermal resistance. Our work provides a simple and effective strategy to stabilize the interface in PSCs and verifies the role of cation microstructure in modulating the properties of 2D perovskite.
资助项目National Natural Science Foundation of China ; Natural Science Foundation of Anhui Province ; China Postdoctoral Science Foundation ; [52102196] ; [2008085QE208] ; [2108085QE190] ; [2021M693213]
WOS研究方向Chemistry ; Materials Science ; Physics
语种英语
出版者ELSEVIER
WOS记录号WOS:000881850400001
资助机构National Natural Science Foundation of China ; Natural Science Foundation of Anhui Province ; China Postdoctoral Science Foundation
内容类型期刊论文
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/130287]  
专题中国科学院合肥物质科学研究院
通讯作者Zheng, Haiying
作者单位1.Anhui Univ Hefei, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
2.Chinese Acad Sci, Inst Solid State Phys, Hefei Inst Phys Sci, Key Lab Photovolta & Energy Conservat Mat, Hefei 230031, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Haiying,Dong, Xinhe,Wu, Weiwei,et al. Regulating microstructure of organic ammonium cations enables interface defect management and stability improvement in 2D/3D perovskite solar cells[J]. APPLIED SURFACE SCIENCE,2023,610.
APA Zheng, Haiying,Dong, Xinhe,Wu, Weiwei,Wang, Chao,Pan, Xu,&Liu, Guozhen.(2023).Regulating microstructure of organic ammonium cations enables interface defect management and stability improvement in 2D/3D perovskite solar cells.APPLIED SURFACE SCIENCE,610.
MLA Zheng, Haiying,et al."Regulating microstructure of organic ammonium cations enables interface defect management and stability improvement in 2D/3D perovskite solar cells".APPLIED SURFACE SCIENCE 610(2023).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace