CORC  > 兰州理工大学  > 兰州理工大学  > 电气工程与信息工程学院
Semi-supervised Affinity Propagation Clustering Algorithm Based On Kernel Function
Zhao Xiaoqiang1,2; Xie Yaping1
2015
关键词Data Mining Clustering Kernel Fraction Affinity Propagation Algorithm
页码3275-3279
英文摘要Aiming at complex data sets, affinity propagation clustering algorithm has shortcomings of clustering inefficiency and low accuracy. A semi-supervised affinity propagation clustering algorithm based on kernel function (K-SAP Clustering Algorithm) is proposed in this paper. This algorithm first maps the complex clustering space into the feature space and change the similarity measure by a kernel function. Then semi-supervised algorithm is used to adjust the similarity matrix to be neighbours of data in same cluster. Finally, AP algorithm is used to iterate and update to get, the global optimum. Simulation results show the proposed algorithm is better and more accurate than SAP algorithm for complex data sets clustering.
会议录2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC)
会议录出版者IEEE
会议录出版地345 E 47TH ST, NEW YORK, NY 10017 USA
语种中文
WOS研究方向Automation & Control Systems ; Engineering
WOS记录号WOS:000375232904114
内容类型会议论文
源URL[http://119.78.100.223/handle/2XXMBERH/36540]  
专题电气工程与信息工程学院
通讯作者Zhao Xiaoqiang
作者单位1.Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
2.Key Lab Gansu Adv Control Ind Proc, Lanzhou 730050, Peoples R China
推荐引用方式
GB/T 7714
Zhao Xiaoqiang,Xie Yaping. Semi-supervised Affinity Propagation Clustering Algorithm Based On Kernel Function[C]. 见:.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace