CORC  > 海洋研究所  > 中国科学院海洋研究所
题名多相异质结体系增强过渡金属Ⅵ 族化合物的光致阴极保护及光催化机制研究
作者冯昌
答辩日期2021-11-05
文献子类博士
授予单位中国科学院大学
授予地点中国科学院海洋研究所
导师陈卓元
关键词多相异质结 过渡金属Ⅵ族化合物 光致阴极保护 光催化 光电化学
学位名称理学博士
其他题名Study on the Mechanism of Photoinduced Cathodic Protection and Photocatalysis of Transition Metal Ⅵ-Group Compounds Enhanced by Multiphase Heterojunction System
学位专业海洋腐蚀与防护
英文摘要

    光电化学、光致阴极保护和光催化技术的基本原理是将光能转化为电能或者化学能,作为一种高效、环保、节能的绿色技术,在当前各领域交叉融合的高峰期具有非常大的研究价值和应用潜力,备受研究者青睐。作为其重要的一部分,半导体材料的开发和设计成为科研学者研究的重点。多相异质结可以有效提升半导体材料的性能,这主要归因于拓展的光谱吸收、光生电子-空穴对的有效分离和光生载流子的快速传输等。本文以常见的过渡金属族化合物为主,通过建立有效多相异质结体系,并进一步探究其显著改善的光致阴极保护和光催化性能,深入分析其反应机制。另外,本文对部分Cd基硫化物进行相关的改性,并探究其光催化和光电化学性能,为开发和设计高效的多相异质结体系并进一步应用于光致阴极保护领域打下基础。具体研究内容如下:

    1. 构建了一种新型的TiO2/MgTixOy多相异质结薄膜用于探究对304不锈钢的光致阴极保护性能。物理表征结果表明,MgTixOy成功包覆在TiO2纳米管阵列的管口表面与其形成多相异质结。并首次利用了扫描开尔文探针测试制备光电极的表面电位分布和功函,较低的表面功函数使得TiO2/MgTixOy薄膜更容易逸出电子,使得光生载流子的浓度增大。进一步的光致阴极保护性能表明,TiO2/MgTixOy多相异质结薄膜相比于TiO2薄膜具有显著增强的光致阴极保护性能,并且其具有极高的稳定性。多相异质结的建立有效抑制了光生电子和空穴的重组,加速了光生载流子的分离。因此,TiO2/MgTixOy多相异质结薄膜具有显著增强的光致阴极保护性能,同时具有极高的稳定性。

    2. TiO2/MgTixOy多相异质结薄膜具有显著增强的光致阴极保护性能和长效的稳定性,然而其产生的多余的光生电子难以保证光电极在暗态下对金属的持续保护。本论文进一步通过溶剂热法制备一种新颖的三维分级结构WO3光电极,并通过电化学方法在其表面沉积ZnO,通过进一步的退火处理,成功制备了WO3/ZnWO4/ZnO多相异质结光电极,并进一步探究其光致阴极保护性能。结果表明,多相异质结体系的建立,形成了良好的能带梯度,加速了光生载流子的分离效率,利于光生电子的定向传输并转移出光电极,使得WO3/ZnWO4/ZnO的光致阴极保护性能相比于WO3ZnO有了显著的提高。同时,由于多相异质结体系中W6+W5+的共存,使得WO3/ZnWO4/ZnO光电极具有一定的储存电子能力,可以实现长久有效的光致阴极保护。

    3. Z-型光催化体系可以保证半导体材料较负的导带电位参与光催化反应,本文设计合成一种碳纳米管(CNTs)作为g-C3N4/CdZnS中间电子传输体的Z型异质结光催化剂(g-C3N4/CNTs/CdZnS)并探究其光催化产氢性能。研究表明,g-C3N4/CNTs/CdZnS的光催化产氢性能相比于单相的g-C3N4CdZnS和双相的g-C3N4/CdZnS光催化剂得到显著地增强,并且具有很好的光催化稳定性。g-C3N4/CNTs/CdZnS增强的光催化产氢性能归因于CNTs作为中间电子介质,能够加速g-C3N4价带的光生空穴和CdZnS导带上光生电子的复合,使得Z型光催化剂的表面更容易逸出光生电子、光生载流子的寿命得到延长。这类新型光催化体系可为长效的光致阴极保护体系的开发和设计提供理论基础。

    4. 对部分Cd基硫化物(CdS等)进行相关的改性,并探究其增强的光催化和光电化学性能,为进一步开发和设计高效的多相异质结体系打下基础。其一,通过制备镁掺杂CdS纳米棒(MgCdS),研究了其能带结构和光催化降解性能。结果表明,镁的掺杂拓宽了CdS纳米棒的带隙宽度,使得其光生电子和空穴的复合速率得到有效抑制,从而使得其光催化性能得到提高。其二,通过溶剂热法制备了一种新颖的三维海绵状CdS薄膜光电极,并研究其光电化学性能。光电化学性能测试结果表明,具有微孔海绵结构的CdS薄膜光电极具有优异的光电化学性能和光致阴极保护性能,同时具有很高的稳定性。其三,制备一种新颖的三维纳米花状Co9S8分级结构,并进一步在其表面沉积CdS纳米颗粒,成功构建Co9S8/CdS Z型异质结光催化体系。研究表明, CdS纳米颗粒均匀的分布于分级结构Co9S8表面形成Z型异质结,并协同分级结构提供大量活性位点的作用,有助于光生载流子快速的溢出,从而加速了Co9S8/CdS Z型光催化剂的光催化反应进程。

语种中文
学科主题海洋科学
目次

1章 绪论... 1

1.1 引言... 1

1.2异质结光电极体系在光致阴极保护领域的研究进展... 2

1.2.1 光致阴极保护的原理及优势... 2

1.2.2 双相异质结光电极的光致阴极保护概述... 3

1.2.3 多相异质结光电极的光致阴极保护概述... 9

1.3异质结体系在光催化领域中的设计和研究进展... 12

1.3.1半导体-半导体异质结体系... 13

1.3.2半导体-金属异质结体系... 16

1.3.3半导体-碳基异质结体系... 19

1.3.4多相异质结体系... 21

1.4 选题意义与研究内容... 25

1.4.1 选题背景与意义... 25

1.4.2 研究内容... 27

2 TiO2/MgTixOy多相异质结薄膜增强光致阴极保护性能... 28

2.1 前言... 28

2.2 实验部分... 29

2.2.1 材料与试剂... 29

2.2.2 仪器与设备... 29

2.2.3 不同光电极的制备... 30

2.2.4不同光电极的物理表征... 31

2.2.5 不同光电极的电化学性能,光致阴极保护性能和SKP测试... 31

2.3 结果与讨论... 32

2.4 本章小结... 42

3 WO3/ZnWO4/ZnO多相异质结光电极薄膜增强光致阴极保护性能    43

3.1 前言... 43

3.2 实验部分... 44

3.2.1 材料与试剂... 44

3.2.2 仪器与设备... 45

3.2.3 不同光电极的制备... 45

3.2.4 物理表征... 46

3.2.5电化学和光致阴极保护性能测试... 47

3.3 结果与讨论... 47

3.4 本章小结... 59

4 g-C3N4/CNTs/CdZnS Z型多相异质结光催化剂的制备及其光催化产氢机制研究    60

4.1 前言... 60

4.2 实验部分... 62

4.2.1 材料与试剂... 62

4.2.2 仪器与设备... 62

4.2.3 不同光催化剂的制备... 62

4.2.4不同光催化剂的物理表征... 63

4.2.5 制备的系列光催化剂的光催化产氢性能测试... 63

4.3 结果与讨论... 63

4.4 本章小结... 73

5 Cd基硫化物的改性及其光催化和光电化学机制研究... 74

5.1 前言... 74

5.2 镁掺杂CdS的光催化性能及机制研究... 75

5.2.1 实验部分... 75

5.2.1.1 镁掺杂CdS纳米棒的制备... 75

5.2.1.2 仪器、物理表征与测试... 75

5.2.1.3 第一性原理计算方法... 76

5.2.2 结果与讨论... 76

5.2.3 小结... 81

5.3 三维海绵状CdS薄膜的制备及其光电化学性能研究... 81

5.3.1 实验部分... 82

5.3.1.1 CdS薄膜光电极的制备... 82

5.3.1.2 仪器、物理表征与光电化学测试... 83

5.3.2 结果与讨论... 83

5.3.3 小结... 88

5.4分级结构Co9S8/CdS Z-型异质结光催化剂光催化性能及反应机制研究... 88

5.4.1 实验部分... 89

5.4.1.1 系列光催化剂的制备... 89

5.4.1.2 仪器、物理表征与光电化学测试... 89

5.4.2 结果与讨论... 89

5.4.3 小结... 94

5.5 本章小结... 95

6章 结论与展望... 97

6.1 结论... 97

6.2 创新点... 99

6.3 展望... 99

参考文献... 102

致  谢... 121

作者简历及攻读学位期间发表的学术论文与研究成果... 123

内容类型学位论文
源URL[http://ir.qdio.ac.cn/handle/337002/177038]  
专题中国科学院海洋研究所
海洋研究所_海洋腐蚀与防护研究发展中心
推荐引用方式
GB/T 7714
冯昌. 多相异质结体系增强过渡金属Ⅵ 族化合物的光致阴极保护及光催化机制研究[D]. 中国科学院海洋研究所. 中国科学院大学. 2021.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace