题名基于双边带调制的脉冲压缩相干激光雷达技术研究
作者杨静
答辩日期2021-05-31
文献子类博士
授予单位Chinese Academy of Sciences
授予地点中国科学院光电技术研究所
关键词激光雷达,脉冲压缩,双边带调制,测距测速,三维成像
学位名称工学博士
英文摘要

传统激光雷达利用从目标反射、未调制的超短光脉冲的飞行时间(Time-of-flight, TOF)来测距,通过相邻脉冲间的距离差分来测速。为了在远距离测量时实现高精度(Precision)和高灵敏度,许多TOF激光雷达系统使用具有低重频和极高峰值功率的超短脉冲激光器。该系统主要有以下三大缺陷:高峰值功率激光脉冲会逐渐损坏各光学装置从而缩短系统寿命;考虑到安全性使用场景受限;该系统只能测量差分时间内的平均速度,实时性差。而在此基础上发展起来的光子计数激光雷达虽然在高峰值功率方面有所改善,但与相干探测体制相比仍然较高,且同样主要应用于测距,难以实时测速。

基于调制的调频连续波(Frequency-modulated continuous wave, FMCW)相干激光雷达,可以一定程度上克服高峰值功率的缺陷,也可以对目标实时测距测速。但以光混频为例,此方案通过回波与本地扫频的拍频得到的电信号的频率来获得目标距离速度信息,因而只能利用在一个扫频周期中二者在时间上的重叠部分,目标距离越远、重叠时间越少、信号能量利用率越低。

而脉冲压缩相干激光雷达没有以上限制。此方案的本振光未经过调制,将回波光与本振光拍频,得到完整扫频电信号,然后通过匹配滤波将其在时域上压缩成窄脉冲,通过压缩窄脉冲的位置得到目标的距离速度信息。这种方案的峰值功率要求不高,通常为mWW级;可以对目标实时测距测速;能量利用率不受回波与本振在一个扫频周期内的重叠时间限制。

目前,几乎所有关于脉冲压缩相干激光雷达的文献报道均是基于单边带调制。在单边带调制方案中,为了保证测速能力,通常需要调制信号上扫频和下扫频即三角扫频,而三角扫频的归一化旁瓣相比上扫频高约10dB,限制了系统灵敏度,也即限制了信噪比,进而限制测量精度、测量距离。为了解决这个问题,本文提出了基于双边带调制的脉冲压缩相干激光雷达系统,该系统只需上扫频即可同时具有测距测速能力,避免了三角扫频中的高旁瓣问题,从而提高系统灵敏度。

首先,本论文对脉冲压缩相干激光雷达基本原理进行详细介绍,理论、仿真分析脉冲压缩测距测速原理,分析各参数如脉冲长度、采样率、相位差的影响,确立希尔伯特变换求包络的信号处理方案,仿真分析比较三角扫频与上扫频的归一化旁瓣,证明三角扫频的旁瓣相比上扫频平均低约10dB

其次,搭建了基于双边带调制脉冲压缩相干激光雷达实验平台,以转盘模拟运动目标,证明该系统只需上扫频即可对运动目标实时测距测速。从电光调制原理出发,结合搭建的激光雷达系统,完善基于双边带调制脉冲压缩相干激光雷达对运动目标的测距测速原理推导。随后以转盘完成了测距测速实验:详细分析系统信噪比、探测阈值的计算方法,通过多次测量取统计标准差的方法衡量系统测距测速精度,结果证明其量级与理论值相符合,并试验测量了系统灵敏度。最后仿真分析了目标运动速度对压缩增益的影响。

然后,针对目标静止时,回波光与本振光的随机相位差引入的探测概率、测量精度下降问题,在原系统加入90°光桥接器加以解决,并以走廊尽头的白色漆墙为目标对改进后的系统进行实验验证。实验结果证明,通过IQ信号的合并基本解决了随机相位差的影响,提高了探测概率、测距精度。改进后的系统同时具备测量运动目标和静止目标的能力。

随后,对系统做优化,确定出光模式、光斑半径、采样设备分辨率等参数,通过对信号也加窗进一步降低旁瓣来提高系统灵敏度。优化后,该系统测量到城市中约856m5726m处建筑物,验证了系统的远程测量能力,仿真分析并实验验证了目标相对平台微振动带来的影响。由于微振动目标理论上也可以将其看成运动目标,所以一定程度上也验证了该系统对远距离运动目标实时测距测速能力。

最后,完成了基于双边带调制脉冲压缩相干激光雷达系统的三维扫描成像能力实验验证。对约856-987m范围的城市中常见建筑物完成扫描成像,展示该系统对建筑物整体、细节等成像能力。

综上所述,本文提出的基于双边带调制的脉冲压缩相干激光雷达系统具备对自由空间远距离硬目标的实时测距测速能力,同时具备对目标的三维扫描成像能力,为相关军用、民用应用场景提供了完整的技术思路和理论支撑。

 

关键词:激光雷达,脉冲压缩,双边带调制,测距测速,三维成像

 

语种中文
内容类型学位论文
源URL[http://ir.ioe.ac.cn/handle/181551/10219]  
专题光电技术研究所_光电技术研究所博硕士论文
推荐引用方式
GB/T 7714
杨静. 基于双边带调制的脉冲压缩相干激光雷达技术研究[D]. 中国科学院光电技术研究所. Chinese Academy of Sciences. 2021.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace