Shale ultrasonic numerical simulation based on the viscoelastic medium wave theory
Chen, Qiao2,3; Xu, Fenglin2,3; Cheng, Liang4; Liu, Hong5; Jian, Xu1; Zhu, Honglin2,6; Chen, Jilong2
刊名Natural Gas Industry
2019
卷号39期号:6页码:63-70
ISSN号10000976
DOI10.3787/j.issn.1000-0976.2019.06.007
英文摘要Using the ultrasonic transmission method to study the ultrasonic response characteristics of shale is the basis for the use of logging data to solve geological and engineering problems in shale gas development. However, among few literatures about such related research by present, shale has been only regarded as an elastic medium with its viscoelastic characteristics being unfortunately ignored. In view of this, based on the theory of viscoelastic medium waves, combined with the ultrasonic penetration experiments, we simulated an initial and vibration sources environment as well as boundary and stability conditions. On this basis, we made the ultrasonic transmission experiments of shale with different bedding angles by the staggered grid finite difference method. The following findings were obtained. (1) The waveform trend obtained by numerical simulation is coincided with the physical experiment result. (2) The rules of shale attenuation coefficients varied along with the test frequencies and the bedding angles obtained by numerical simulation calculation and physical experiment based on ideal and real cores agree well with each other. (3) Under a certain constant bedding size and density, the wave velocity declined in power function and the attenuation coefficient increases linearly. In conclusion, this numerical computation method proposed in this paper is scientific and reasonable and is of strong adaptability and can not only be used to analyze the influence of shale bedding characteristics on ultrasonic propagation characteristics from a microscopic point of view, but avoid human errors and save the experimental cost, therefore it is of important theoretical and practical significance. © 2019, Natural Gas Industry Journal Agency. All right reserved.
语种中文
内容类型期刊论文
源URL[http://119.78.100.138/handle/2HOD01W0/9816]  
专题中国科学院重庆绿色智能技术研究院
作者单位1.State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu; Sichuan; 610500, China;
2.Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing; 400714, China;
3.Chongqing Fuling Shale Gas Environmental Protection Research & Development and Technical Service Center, Chongqing; 408000, China;
4.Institute of Geological Exploration and Development of oil CNPC Chuanqing Drilling Engineering Co., Ltd., Chengdu; Sichuan; 610051, China;
5.Chongqing Fulin Institute of Geology and Mineral Resources, Chongqing; 401123, China;
6.Chongqing Technology and Business University, Chongqing; 400067, China
推荐引用方式
GB/T 7714
Chen, Qiao,Xu, Fenglin,Cheng, Liang,et al. Shale ultrasonic numerical simulation based on the viscoelastic medium wave theory[J]. Natural Gas Industry,2019,39(6):63-70.
APA Chen, Qiao.,Xu, Fenglin.,Cheng, Liang.,Liu, Hong.,Jian, Xu.,...&Chen, Jilong.(2019).Shale ultrasonic numerical simulation based on the viscoelastic medium wave theory.Natural Gas Industry,39(6),63-70.
MLA Chen, Qiao,et al."Shale ultrasonic numerical simulation based on the viscoelastic medium wave theory".Natural Gas Industry 39.6(2019):63-70.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace