CORC  > 金属研究所  > 中国科学院金属研究所
Oxygen Vacancy Ordering Modulation of Magnetic Anisotropy in Strained LaCoO3-x Thin Films
Zhang, Ningbin2,3; Zhu, Yinlian2; Li, Da2; Pan, Desheng2,3; Tang, Yunlong2; Han, Mengjiao2; Ma, Jinyuan1,2; Wu, Bo2,3; Zhang, Zhidong2; Ma, Xiuliang1,2
刊名ACS APPLIED MATERIALS & INTERFACES
2018-11-07
卷号10期号:44页码:38230-38238
关键词LaCoO3-x thin film oxygen vacancy strain anisotropy field pulsed laser deposition transmission electron microscopy
ISSN号1944-8244
DOI10.1021/acsami.8b13674
通讯作者Zhu, Yinlian(ylzhu@imr.ac.cn)
英文摘要Oxygen vacancy configurations and concentration are coupled with the magnetic, electronic, and transport properties of perovskite oxides, and manipulating the physical properties by tuning the vacancy structures of thin films is crucial for applications in many functional devices. In this study, we report a direct atomic resolution observation of the preferred orientation of vacancy ordering structure in the epitaxial LaCoO3-x (LCO) thin films under various strains from large compressive to large tensile strain utilizing scanning transmission electron microscopy (STEM). Under compressive strains, the oxygen vacancy ordering prefers to be along the planes parallel to the heterointerface. Changing the strains from compressive to tensile, the oxygen vacancy planes turn to be perpendicular to the heterointerface. Aberration-corrected STEM images, electron diffractions, and Xray diffraction combined with X-ray photoelectron spectroscopy demonstrate that the vacancy concentration increases with increasing misfit strains and vacancy distribution is more ordered and homogeneous. The temperature-dependent magnetization curves show the Curie temperature increases, displaying a positive correlation with the misfit strains. With change in the strain from compressive to tensile, anisotropy fields vary and show large values under tensile strains. It is proposed that oxygen vacancy concentration and preferred ordering planes are responsible for the enhanced magnetic properties of LCO films. Our results have realized a controllable preparation of oxygen vacancy ordering structures via strains and thus provide an effective method to regulate and optimize the physical properties such as magnetic properties by strain engineering.
资助项目National Natural Science Foundation of China[51571197] ; National Natural Science Foundation of China[51501194] ; National Natural Science Foundation of China[51671194] ; National Natural Science Foundation of China[51401212] ; National Natural Science Foundation of China[51521091] ; National Basic Research Program of China[2014CB921002] ; Key Research Program of Frontier Sciences CAS[QYZDJ-SSW-JSC010]
WOS研究方向Science & Technology - Other Topics ; Materials Science
语种英语
出版者AMER CHEMICAL SOC
WOS记录号WOS:000449887600053
资助机构National Natural Science Foundation of China ; National Basic Research Program of China ; Key Research Program of Frontier Sciences CAS
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/130374]  
专题金属研究所_中国科学院金属研究所
通讯作者Zhu, Yinlian
作者单位1.Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Langongping Rd 287, Lanzhou 730050, Gansu, Peoples R China
2.Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Wenhua Rd 72, Shenyang 110016, Peoples R China
3.Univ Sci & Technol China, Sch Mat Sci & Engn, Hefei 230026, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Ningbin,Zhu, Yinlian,Li, Da,et al. Oxygen Vacancy Ordering Modulation of Magnetic Anisotropy in Strained LaCoO3-x Thin Films[J]. ACS APPLIED MATERIALS & INTERFACES,2018,10(44):38230-38238.
APA Zhang, Ningbin.,Zhu, Yinlian.,Li, Da.,Pan, Desheng.,Tang, Yunlong.,...&Ma, Xiuliang.(2018).Oxygen Vacancy Ordering Modulation of Magnetic Anisotropy in Strained LaCoO3-x Thin Films.ACS APPLIED MATERIALS & INTERFACES,10(44),38230-38238.
MLA Zhang, Ningbin,et al."Oxygen Vacancy Ordering Modulation of Magnetic Anisotropy in Strained LaCoO3-x Thin Films".ACS APPLIED MATERIALS & INTERFACES 10.44(2018):38230-38238.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace