Extra-low Reynolds number vane separation using immersed boundary method
Prapamonthon P; Yin B(银波); Yang GW(杨国伟)
2019
会议日期July 28, 2019 - August 1, 2019
会议地点San Francisco, CA, United states
关键词Computational Fluid Dynamics Drag Fluid-Structure Interaction Lift Unsteady Flows Vortices
英文摘要Nowadays, mini unmanned aerial vehicles (MUAVs) and micro air vehicles (MAVs) are not only beneficially used as aviation models but also as modern drones for military missions and other civilian applications. Hence, research and development of propulsion sources for MUAVs and MAVs dynamically increase with a future trend of high performance, but low energy consumption. Certainly, using micro and ultra-small-size gas turbine is a good option for the propulsion source. To achieve ideal flight of MUAVs and MAVs powered by micro and ultra-small-size gas turbines under this trend, understanding of flow phenomena at wide ranges of Reynolds number is essential. This research presents a 2D numerical study of characteristics of laminar flow separation and the trailing-edge vortex on a turbine vane at extra-low Reynolds numbers (Res) i.e. Re = 1800 and 3600, and three rotational angles (a) i.e. a = 0º, 15º and 30º using immersed boundary method (IBM). With this method, the problem of incompressible flow is addressed by a sharp interface IBM. Numerical results indicate that IBM can characterize phenomena of laminar separation flow, which usually happens on the turbine airfoil when laminar boundary layer cannot overcome adverse pressure gradients and viscous effects. To our current knowledge, this may be the first research to study flow behavior at such low Res for gas turbine vanes using IBM. Even though it is now not common to operate micro and ultra-small-size gas turbines under these conditions, it is important to know how aerodynamic performance may be if micro and ultra-small-size gas turbines need to run under such conditions in the near future. Copyright © 2019 ASME.
会议录ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference, AJKFluids 2019
语种英语
URL标识查看原文
ISBN号9780791859032
内容类型会议论文
源URL[http://dspace.imech.ac.cn/handle/311007/85109]  
专题力学研究所_流固耦合系统力学重点实验室(2012-)
作者单位1.Department of Aeronautical Engineering, International Academy of Aviation Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
2.Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
推荐引用方式
GB/T 7714
Prapamonthon P,Yin B,Yang GW. Extra-low Reynolds number vane separation using immersed boundary method[C]. 见:. San Francisco, CA, United states. July 28, 2019 - August 1, 2019.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace