Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration
Dong JL(董金磊)4; Song X(宋鑫)3,5; Wang, Z. J.2; Xiao KL(肖凯璐)4,5; Liu, Y. H.2; Wilde, G.1; Wu XQ(吴先前)4; 蒋敏强2,4)
刊名EXTREME MECHANICS LETTERS
2021-04-01
卷号44页码:6
关键词Metallic glass nanofilm High-velocity impact Penetration Impact resistance
ISSN号2352-4316
DOI10.1016/j.eml.2021.101258
通讯作者Wu, X. Q.(wuxianqian@imech.ac.cn) ; Jiang, M. Q.(mqjiang@imech.ac.cn)
英文摘要Macro- and microscale metallic glasses exhibit excellent protective capability under hypervelocity projectile impact conditions. However, it is formidably challenging to evaluate the ballistic performance of metallic glasses with characteristic sizes down to the nanoscale. Here, we adopt the laser-induced micro-particle impact technique to penetrate 60-nm-thick Ni60Ta40 metallic glass nanofilms with projectile velocities in the range of 186-540 m/s. Based on the ballistic analysis, the superior impact resistance of the metallic glass nanofilms is quantitatively characterized in terms of the specific penetration energy. The post-mortem observations of the penetration features reveal that shear-banding, cracking, and bending of cracking-induced petals are the main energy dissipation modes beyond the localized perforated hole, which is strongly dependent on impact velocities. This work for the first time achieves high-strain-rate loading on nanoscale metallic glasses, and extends their engineering applications as promising armor materials for high-velocity impact protection. (C) 2021 Elsevier Ltd. All rights reserved.
分类号一类
资助项目National Natural Science Foundation of China (NSFC) Basic Science Center for Multiscale Problems in Nonlinear Mechanics''[11988102] ; NSFC, China[11972345] ; NSFC, China[11672315] ; NSFC, China[11772347] ; Science Challenge Project, China[TZ2018001] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB22040302] ; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB22040303]
WOS关键词MECHANICAL-BEHAVIOR ; NOSED PROJECTILES ; ENERGY-ABSORPTION ; TENSILE DUCTILITY ; PLASTIC-FLOW ; PLATES ; DEFORMATION ; PERFORMANCE ; GRAPHENE ; ORIGIN
WOS研究方向Engineering ; Materials Science ; Mechanics
语种英语
WOS记录号WOS:000642464700005
资助机构National Natural Science Foundation of China (NSFC) Basic Science Center for Multiscale Problems in Nonlinear Mechanics'' ; NSFC, China ; Science Challenge Project, China ; Strategic Priority Research Program of the Chinese Academy of Sciences
其他责任者Wu, X. Q. ; Jiang, M. Q.
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/86512]  
专题力学研究所_流固耦合系统力学重点实验室(2012-)
力学研究所_非线性力学国家重点实验室
作者单位1.Westfalische Wilhelms Univ Munster, Inst Mat Phys, D-48149 Munster, Germany
2.Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China;
3.Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100190, Peoples R China;
4.Chinese Acad Sci, Inst Mech, Key Lab Mech Fluid Solid Coupling Syst, Beijing 100190, Peoples R China;
5.Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China;
推荐引用方式
GB/T 7714
Dong JL,Song X,Wang, Z. J.,et al. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration[J]. EXTREME MECHANICS LETTERS,2021,44:6.
APA 董金磊.,宋鑫.,Wang, Z. J..,肖凯璐.,Liu, Y. H..,...&蒋敏强2,4).(2021).Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration.EXTREME MECHANICS LETTERS,44,6.
MLA 董金磊,et al."Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration".EXTREME MECHANICS LETTERS 44(2021):6.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace