Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries
Wu, Ying2; Wei, Zengxi3; Xu, Rui2; Gong, Yue4; Gu, Lin4,5; Ma, Jianmin3; Yu, Yan1,2,6
刊名NANO RESEARCH
2019-09-01
卷号12期号:9页码:2211-2217
关键词multichannel porous TiO2 nanofibers Cu nanodots Cu2+ doping sodium ion batteries density functional theory (DFT) calculations
ISSN号1998-0124
DOI10.1007/s12274-018-2248-9
通讯作者Yu, Yan(yanyumse@ustc.edu.cn)
英文摘要The use of TiO2 as an anode in rechargeable sodium-ion batteries (NIBs) is hampered by intrinsic low electronic conductivity of TiO2 and inferior electrode kinetics. Here, a high-performance TiO2 electrode for NIBs is presented by designing a multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies (Cu-MPTO). The in-situ grown well-dispersed copper nanodots of about 3 nm on TiO2 surface could significantly enhance electronic conductivity of the TiO2 fibers. The one-dimensional multichannel porous structure could facilitate the electrolyte to soak in, leading to short transport path of Na+ through carbon toward the TiO2 nanoparticle. The Cu2+-doping induced oxygen vacancies could decrease the bandgap of TiO2, resulting in easy electron trapping. With this strategy, the Cu-MPTO electrodes render an outstanding rate performance for NIBs (120 mAh center dot g(-1) at 20 C) and a superior cycling stability for ultralong cycle life (120 mAh center dot g(-1) at 20 C and 96.5% retention over 2,000 cycles). Density functional theory (DFT) calculations also suggest that Cu2+ doping can enhance the conductivity and electron transfer of TiO2 and lower the sodiation energy barrier. This strategy is confirmed to be a general process and could be extended to improve the performance of other materials with low electronic conductivity applied in energy storage systems.
资助项目National Key R&D Research Program of China[2018YFB0905400] ; National Key R&D Research Program of China[2016YFB0100305] ; National Natural Science Foundation of China[51622210] ; National Natural Science Foundation of China[51872277] ; Fundamental Research Funds for the Central Universities[WK3430000004] ; DNL cooperation Fund, CAS[DNL180310]
WOS关键词PERFORMANCE ANODE MATERIAL ; EFFICIENT HYDROGEN EVOLUTION ; ENERGY-STORAGE ; AG NANOPARTICLES ; AT-C ; LITHIUM ; ANATASE ; NANOCRYSTALS ; COMPOSITES ; REDUCTION
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
语种英语
出版者TSINGHUA UNIV PRESS
WOS记录号WOS:000485041800018
资助机构National Key R&D Research Program of China ; National Key R&D Research Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities ; Fundamental Research Funds for the Central Universities ; DNL cooperation Fund, CAS ; DNL cooperation Fund, CAS ; National Key R&D Research Program of China ; National Key R&D Research Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities ; Fundamental Research Funds for the Central Universities ; DNL cooperation Fund, CAS ; DNL cooperation Fund, CAS ; National Key R&D Research Program of China ; National Key R&D Research Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities ; Fundamental Research Funds for the Central Universities ; DNL cooperation Fund, CAS ; DNL cooperation Fund, CAS ; National Key R&D Research Program of China ; National Key R&D Research Program of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; Fundamental Research Funds for the Central Universities ; Fundamental Research Funds for the Central Universities ; DNL cooperation Fund, CAS ; DNL cooperation Fund, CAS
内容类型期刊论文
源URL[http://cas-ir.dicp.ac.cn/handle/321008/172957]  
专题大连化学物理研究所_中国科学院大连化学物理研究所
通讯作者Yu, Yan
作者单位1.Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
2.Univ Sci & Technol China, CAS, Key Lab Mat Energy Convers, Dept Mat Sci & Engn, Hefei 230026, Anhui, Peoples R China
3.Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China
4.Chinese Acad Sci, Inst Phys, Beijing Lab Elect Microscopy, Beijing 100190, Peoples R China
5.Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China
6.Chinese Acad Sci, Dalian Natl Lab Clean Energy DNL, Dalian 116023, Peoples R China
推荐引用方式
GB/T 7714
Wu, Ying,Wei, Zengxi,Xu, Rui,et al. Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries[J]. NANO RESEARCH,2019,12(9):2211-2217.
APA Wu, Ying.,Wei, Zengxi.,Xu, Rui.,Gong, Yue.,Gu, Lin.,...&Yu, Yan.(2019).Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries.NANO RESEARCH,12(9),2211-2217.
MLA Wu, Ying,et al."Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries".NANO RESEARCH 12.9(2019):2211-2217.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace