Surface modelling of global terrestrial ecosystems under three climate change scenarios
Yue T. X. ; Fan Z. M. ; Chen C. F. ; Sun X. F. ; Li B. L.
2011
关键词Climate Scenario Terrestrial ecosystem HASM Holdridge life zone Ecological diversity yellow-river delta high-accuracy earth vegetation distributions diversity responses wetland systems plants
英文摘要A high accuracy and speed method (HASM) of surface modelling is developed to find a solution for error problem and to improve computation speed. A digital elevation model (DEM) is established on spatial resolution of 13.5 km x 13.5 km. Regression formulations among temperature, elevation and latitude are simulated in terms of data from 2766 weather observation stations scattered over the world by using the 13.5 km x 13.5 km DEM as auxiliary data. Three climate scenarios of HadCM3 are refined from spatial resolution of 405 km x 270 km to 13.5 km x 13.5 km in terms of the regression formulations. HASM is employed to simulate surfaces of mean annual bio-temperature, mean annual precipitation and potential evapotranspiration ratio during the periods from 1961 to 1990(T(1)), from 2010 to 2039 (T(2)), from 2040 to 2069 (T(3)), and from 2070 to 2099 (T(4)) on spatial resolution of 13.5 km x 13.5 km. Three scenarios of terrestrial ecosystems on global level are finally developed on the basis of the simulated climate surfaces. The scenarios show that all polar/nival, subpolar/alpine and cold ecosystem types would continuously shrink and all tropical types, except tropical rain forest in scenario A1Fi, would expand because of the climate warming. Especially at least 80% of moist tundra and 22% of nival area might disappear in period T(4) comparing with the ones in the period T(1). Tropical thorn woodland might increase by more than 97%. Subpolar/alpine moist tundra would be the most sensitive ecosystem type because its area would have the rapidest decreasing rate and its mean center would shift the longest distance towards west. Subpolar/alpine moist tundra might be able to serve as an indicator of climatic change. In general, climate change would lead to a continuous reduction of ecological diversity. (C) 2010 Elsevier B.V. All rights reserved.
出处Ecological Modelling
222
14
2342-2361
收录类别SCI
ISSN号0304-3800
内容类型SCI/SSCI论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/22474]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Yue T. X.,Fan Z. M.,Chen C. F.,et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios. 2011.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace