The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image
Zhang R. H. ; Wang J. F. ; Zhu C. Y. ; Sun X. M. ; Zhu Z. L.
2004
关键词surface geometric roughness aerodynamic surface roughness SAR backscattering model moisture retrieval model roughness transformation model
英文摘要After having analyzed the requirement on the aerodynamic earth's surface roughness in two-dimensional distribution in the research field of interaction between land surface and atmosphere, this paper presents a new way to calculate the aerodynamic roughness using the earth's surface geometric roughness retrieved from SAR (Synthetic Aperture Radar) and TM thermal infrared image data. On the one hand, the SPM (Small Perturbation Model) was used as a theoretical SAR backscattering model to describe the relationship between the SAR backscattering coefficient and the earth's surface geometric roughness and its dielectric constant retrieved from the physical model between the soil thermal inertia and the soil surface moisture with the simultaneous TM thermal infrared image data and the ground microclimate data. On the basis of the SAR image matching with the TM image, the non-volume scattering surface geometric information was obtained from the SPM model at the TM image pixel scale, and the ground pixel surface's equivalent geometric roughness-height standard RMS (Root Mean Square) was achieved from the geometric information by the transformation of the typical topographic factors. The vegetation (wheat, tree) height retrieved from spectrum model was also transferred into its equivalent geometric roughness. A completely two-dimensional distribution map of the equivalent geometric roughness over the experimental area was produced by the data mosaic technique. On the other hand, according to the atmospheric eddy currents theory, the aerodynamic surface roughness was iterated out with the atmosphere stability correction method using the wind and the temperature profiles data measured at several typical fields such as bare soil field and vegetation field. After having analyzed the effect of surface equivalent geometric roughness together with dynamic and thermodynamic factors on the aerodynamic surface roughness within the working area, this paper first establishes a scale transformation model to calculate the aerodynamic surface roughness from surface equivalent geometric roughness. The final result retrieved from above series of models was validated using the filed measurements. It is concluded that the proposed approach is operational and feasible to derive the aerodynamic surface roughness at the pixel scale from a combination of the SAR and TM images.
出处Science in China Series D-Earth Sciences
47
12
1134-1146
收录类别SCI
语种英语
ISSN号1006-9313
内容类型SCI/SSCI论文
源URL[http://ir.igsnrr.ac.cn/handle/311030/22369]  
专题地理科学与资源研究所_历年回溯文献
推荐引用方式
GB/T 7714
Zhang R. H.,Wang J. F.,Zhu C. Y.,et al. The retrieval of two-dimensional distribution of the earth's surface aerodynamic roughness using SAR image and TM thermal infrared image. 2004.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace