CORC  > 北京大学  > 地球与空间科学学院
Dynamic variation and the fast acceleration of particles in Earth's radiation belt
Zong QiuGang ; Yuan ChongJing ; Wang YongFu ; Su ZhenPeng
刊名science china earth sciences
2013
关键词radiation belt killer electrons CME magnetic storm CIR magnetic storm wave-particle interaction ULF wave VLF wave FREQUENCY GEOMAGNETIC-PULSATIONS MULTI-SPACECRAFT OBSERVATIONS RELATIVISTIC ELECTRON FLUX WHISTLER-MODE CHORUS INNER MAGNETOSPHERE RESONANT INTERACTION MAGNETIC-FIELD SUDDEN COMMENCEMENTS GEOSYNCHRONOUS ORBIT SCATTERING LOSS
DOI10.1007/s11430-013-4644-z
英文摘要We have quantitatively investigated the radiation belt's dynamic variations of 1.5-6.0 MeV electrons during 54 CME (coronal mass ejection)-driven storms from 1993 to 2003 and 26 CIR (corotating interaction region)-driven recurrent storms in 1995 by utilizing case and statistical studies based on the data from the SAMPEX satellite. It is found that the boundaries determined by fitting an exponential to the flux as a function of L shell obtained in this study agree with the observed outer and inner boundaries of the outer radiation belt. Furthermore, we have constructed the Radiation Belt Content (RBC) index by integrating the number density of electrons between those inner and outer boundaries. According to the ratio of the maximum RBC index during the recovery phase to the pre-storm average RBC index, we conclude that CME-driven storms produce more relativistic electrons than CIR-driven storms in the entire outer radiation belt, although the relativistic electron fluxes during CIR-related storms are much higher than those during CME-related storms at geosynchronous orbit. The physical radiation belt model STEERB is based on the three-dimensional Fokker-Planck equation and includes the physical processes of local wave-particle interactions, radial diffusion, and adiabatic transport. Due to the limitation of numerical schemes, formal radiation belt models do not include the cross diffusion term of local wave-particle interactions. The numerical experiments of STEERB have shown that the energetic electron fluxes can be overestimated by a factor of 5 or even several orders (depending on the pitch angle) if the cross diffusion term is ignored. This implies that the cross diffusion term is indispensable for the evaluation of radiation belt electron fluxes. Formal radiation belt models often adopt dipole magnetic field; the time varying Hilmer-Voigt geomagnetic field was adopted by the STEERB model, which self-consistently included the adiabatic transport process. The test simulations clearly indicate that the adiabatic process can significantly affect the evolution of radiation belt electrons. The interactions between interplanetary shocks and magnetosphere can excite ULF waves in the inner magnetosphere; the excited polodial mode ULF wave can cause the fast acceleration of "killer electrons". The acceleration mechanism of energetic electrons by poloidal and toroidal mode ULF wave is different at different L shells. The acceleration of energetic electrons by the toroidal mode ULF waves becomes important in the region with a larger L shell (the outer magnetosphere); in smaller L shell regions (the inner magnetosphere), the poloidal mode ULF becomes responsible for the acceleration of energetic electrons.; http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000321974100002&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701 ; Geosciences, Multidisciplinary; SCI(E); EI; 2; REVIEW; 7; 1118-1140; 56
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/148252]  
专题地球与空间科学学院
推荐引用方式
GB/T 7714
Zong QiuGang,Yuan ChongJing,Wang YongFu,et al. Dynamic variation and the fast acceleration of particles in Earth's radiation belt[J]. science china earth sciences,2013.
APA Zong QiuGang,Yuan ChongJing,Wang YongFu,&Su ZhenPeng.(2013).Dynamic variation and the fast acceleration of particles in Earth's radiation belt.science china earth sciences.
MLA Zong QiuGang,et al."Dynamic variation and the fast acceleration of particles in Earth's radiation belt".science china earth sciences (2013).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace