CORC  > 北京大学  > 化学与分子工程学院
Supersensitive Oxidation-Responsive Biodegradable PEG Hydrogels for Glucose-Triggered Insulin Delivery
Zhang, Mei ; Song, Cheng-Cheng ; Du, Fu-Sheng ; Li, Zi-Chen
刊名ACS APPLIED MATERIALS & INTERFACES
2017
关键词oxidation-responsive PEG hydrogel glucose-regulated insulin delivery glucose oxidase phenylboronic acid BIOMEDICAL APPLICATIONS SUPRAMOLECULAR HYDROGEL REACTIVE OXYGEN DRUG-DELIVERY PHENYLBORONIC ACID POLYMER RELEASE MICROGELS PEROXIDE OXIDASE
DOI10.1021/acsami.7608372
英文摘要Reactive oxygen species (ROS)-responsive polymers and hydrogels represent an emerging family of intelligent materials owing to the key functions of ROS in physiological processes or pathological diseases. Nonetheless, the weaknesses such as low sensitivity, slow response, instability, and low mechanical strength are associated with the limited ROS-responsive polymeric or supramolecular hydrogels. In this study, a novel type of oxidation -responsive degradable hydrogels was fabricated by the redox-initiated radical polymerization of a 4-arm-poly(ethylene glycol) (PEG) acrylic macromonomer that possesses a H2O2-cleavable phenylboronic acid linker in each of the arms. The macroscopic hydrogels have the features of good cytocompatibility, moderate mechanical strength, and fast response toward H2O2 of low concentration, owing to the covalently cross-linked hydrophilic PEG network and high sensitivity of the linker. They could encapsulate biomacromolecules, such as insulin and glucose oxidase (GOx), with high efficacy, affording a new glucose -responsive insulin-delivery platform on the basis of enzymatic transformation of a biochemical signal (glucose) into an oxidative stimulus (H2O2). Interestingly, in vitro results demonstrate that the same GOx-loaded hydrogel exhibited disparate degradation modes under different triggering molecules, that is, bulk degradation by H2O2 and surface erosion by glucose. Moreover, compared to the macroscopic hydrogel, the nanogel with a diameter of similar to 160 nm prepared by inverse emulsion polymerization showed a much higher degradation rate even under triggering of 20 mu M H2O2, a pathologically available concentration in vivo.; National Natural Science Foundation of China [21474001, 21534001]; National Key Research and Development Program of China [2016YFA0201400]; SCI(E); ARTICLE; 31; 25905-25914; 9
语种英语
内容类型期刊论文
源URL[http://ir.pku.edu.cn/handle/20.500.11897/471542]  
专题化学与分子工程学院
推荐引用方式
GB/T 7714
Zhang, Mei,Song, Cheng-Cheng,Du, Fu-Sheng,et al. Supersensitive Oxidation-Responsive Biodegradable PEG Hydrogels for Glucose-Triggered Insulin Delivery[J]. ACS APPLIED MATERIALS & INTERFACES,2017.
APA Zhang, Mei,Song, Cheng-Cheng,Du, Fu-Sheng,&Li, Zi-Chen.(2017).Supersensitive Oxidation-Responsive Biodegradable PEG Hydrogels for Glucose-Triggered Insulin Delivery.ACS APPLIED MATERIALS & INTERFACES.
MLA Zhang, Mei,et al."Supersensitive Oxidation-Responsive Biodegradable PEG Hydrogels for Glucose-Triggered Insulin Delivery".ACS APPLIED MATERIALS & INTERFACES (2017).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace