CORC  > 金属研究所  > 中国科学院金属研究所
Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment
Ma, YR; Yang, HJ; Tian, YZ; Pang, JC; Zhang, ZF; Zhang, ZF (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China.
刊名MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
2018-01-24
卷号713页码:146-150
关键词Induced Phase-transformations Severe Plastic-deformation Al-based Alloy Electric-current Stainless-steel Current-density Grain-refinement Ti-6al-4v Alloy Microstructure Behavior
ISSN号0921-5093
英文摘要The effects of electropulsing treatment (EPT) on the microstructure and corresponding mechanical properties of a nano-lamellar 316L austenitic stainless steel were investigated. The original 316L stainless steel features a nano-lamellar framework with high density of dislocations via cold rolling. The nanostructured stainless steel was hardened and strengthened after EPT with relatively low discharge voltage, which may result from the cooperative effect of stable nano-lamellar structure and mobile dislocations recovery. Both the microhardness and tensile strength would decrease significantly with the increase of discharge voltage due to the nucleation and growth of recrystallized grains in the steel.; The effects of electropulsing treatment (EPT) on the microstructure and corresponding mechanical properties of a nano-lamellar 316L austenitic stainless steel were investigated. The original 316L stainless steel features a nano-lamellar framework with high density of dislocations via cold rolling. The nanostructured stainless steel was hardened and strengthened after EPT with relatively low discharge voltage, which may result from the cooperative effect of stable nano-lamellar structure and mobile dislocations recovery. Both the microhardness and tensile strength would decrease significantly with the increase of discharge voltage due to the nucleation and growth of recrystallized grains in the steel.
学科主题Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering
语种英语
资助机构National Natural Science Foundation of China [51501196, 51331007]; IMR Foundation for "Young merit scholars" [2017235]; Youth Innovation Promotion Association CAS [2017235]
公开日期2018-06-05
内容类型期刊论文
源URL[http://ir.imr.ac.cn/handle/321006/79568]  
专题金属研究所_中国科学院金属研究所
通讯作者Yang, HJ; Zhang, ZF (reprint author), Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China.
推荐引用方式
GB/T 7714
Ma, YR,Yang, HJ,Tian, YZ,et al. Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment[J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2018,713:146-150.
APA Ma, YR,Yang, HJ,Tian, YZ,Pang, JC,Zhang, ZF,&Zhang, ZF .(2018).Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment.MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,713,146-150.
MLA Ma, YR,et al."Hardening and softening mechanisms in a nano-lamellar austenitic steel induced by electropulsing treatment".MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING 713(2018):146-150.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace