CORC  > 高能物理研究所
Interface engineered in situ anchoring of co9s8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries
Li, Yang1,2; Zhou, Wei3; Dong, Juncai4; Luo, Yun5; An, Pengfei4; Liu, Juan1; Wu, Xin1; Xu, Guilan1; Zhang, Huabin6; Zhang, Jian1
刊名Nanoscale
2018-02-07
卷号10期号:5页码:2649-2657
ISSN号2040-3364
DOI10.1039/c7nr07235j
通讯作者Zhang, huabin(zhang.huabin@ntu.edu.sg) ; Zhang, jian(zhj@fjirsm.ac.cn)
英文摘要Interface modification is an effective and promising route for developing functional electrocatalysts. however, researchers have not created a reliable method to optimize the interfaces of components existing in electrocatalysts, although it is very crucial for the technological development of high-performance electrodes. here, we develop a strategy aiming at the in situ anchorage of co9s8 nanoparticles into a nitrogen (n), sulfur (s) co-implanted three-dimensional carbon matrix (co9s8@nscm) as a highly active and durable nonprecious metal electrocatalyst for the oxygen reduction reaction (orr) and oxygen evolution reaction (oer) in alkaline medium. this strategy offers an opportunity to optimize the interface interaction and affords high activity for the orr and oer in terms of low overpotentials and high current intensities. in addition, by confining co9s8 nanoparticles into a n,s-doped carbon matrix, corrosion and aggregation can be effectively prevented, and thus the catalyst exhibits nearly unfading orr catalytic performance after 100 000 s testing, a low discharge-charge voltage gap (0.81 v) and a long cycle life (up to 840 cycles) in zn-air batteries. the present work highlights potentially powerful interface engineering for designing multi-component heterostructures with advanced performances in oxygen electrochemistry and related energy conversion.
WOS关键词OXYGEN REDUCTION REACTION ; METAL-ORGANIC FRAMEWORK ; BIFUNCTIONAL ELECTROCATALYST ; EVOLUTION REACTIONS ; NITROGEN ; CATALYSTS ; PERFORMANCE ; CATHODE ; SULFUR ; COBALT
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
语种英语
出版者ROYAL SOC CHEMISTRY
WOS记录号WOS:000424075400054
内容类型期刊论文
URI标识http://www.corc.org.cn/handle/1471x/2177998
专题高能物理研究所
通讯作者Zhang, Huabin; Zhang, Jian
作者单位1.Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
2.Fujian Normal Univ, Coll Mat Sci & Engn, Fuzhou 350007, Fujian, Peoples R China
3.Tianjin Univ, Fac Sci, Tianjin Key Lab Low Dimens Mat Phys & Preparing T, Dept Appl Phys, Tianjin 300072, Peoples R China
4.Chinese Acad Sci, Inst High Energy Phys, Beijing Synchrotron Radiat Facil, Beijing 100049, Peoples R China
5.South China Univ Technol, Guangzhou Higher Educ Mega Ctr, New Energy Res Inst, Sch Environm & Energy, Guangzhou, Guangdong, Peoples R China
6.Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
推荐引用方式
GB/T 7714
Li, Yang,Zhou, Wei,Dong, Juncai,et al. Interface engineered in situ anchoring of co9s8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries[J]. Nanoscale,2018,10(5):2649-2657.
APA Li, Yang.,Zhou, Wei.,Dong, Juncai.,Luo, Yun.,An, Pengfei.,...&Zhang, Jian.(2018).Interface engineered in situ anchoring of co9s8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries.Nanoscale,10(5),2649-2657.
MLA Li, Yang,et al."Interface engineered in situ anchoring of co9s8 nanoparticles into a multiple doped carbon matrix: highly efficient zinc-air batteries".Nanoscale 10.5(2018):2649-2657.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace