CORC  > 云南天文台  > 中国科学院云南天文台  > 恒星物理研究组
Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751
Zong, Weikai1,2; Charpinet, Stephane2; Fu, Jian-Ning1; Vauclair, Gerard2; Niu, Jia-Shu3,4; Su J(苏杰)1,5,6
刊名ASTROPHYSICAL JOURNAL
2018-02-01
卷号853期号:2
关键词Stars: Individual (Kic 3527751) Stars: Oscillations (Including Pulsations) Techniques: Photometric
ISSN号0004-637X
DOI10.3847/1538-4357/aaa548
产权排序第5完成单位
文献子类Article
英文摘要

We present the first results of an ensemble and systematic survey of oscillation mode variability in pulsating hot B subdwarf (sdB) and white dwarf stars observed with the original Kepler mission. The satellite provides uninterrupted high-quality photometric data with a time baseline that can reach up to 4 yr collected on pulsating stars. This is a unique opportunity to characterize long-term behaviors of oscillation modes. A mode modulation in amplitude and frequency can be independently inferred by its fine structure in the Fourier spectrum, from the sLSP, or with prewhitening methods applied to various parts of the light curve. We apply all these techniques to the sdB star KIC 3527751, a long-period-dominated hybrid pulsator. We find that all the detected modes with sufficiently large amplitudes to be thoroughly studied show amplitude and/or frequency variations. Components of three identified quintuplets around 92, 114, and 253 mu Hz show signatures that can be linked to nonlinear interactions according to the resonant mode coupling theory. This interpretation is further supported by the fact that many oscillation modes are found to have amplitudes and frequencies showing correlated or anticorrelated variations, a behavior that can be linked to the amplitude equation formalism, where nonlinear frequency corrections are determined by their amplitude variations. Our results suggest that oscillation modes varying with diverse patterns are a very common phenomenon in pulsating sdB stars. Close structures around main frequencies therefore need to be carefully interpreted in light of this finding to secure a robust identification of real eigenfrequencies, which is crucial for seismic modeling. The various modulation patterns uncovered should encourage further developments in the field of nonlinear stellar oscillation theory. It also raises a warning to any long-term project aiming at measuring the rate of period change of pulsations caused by stellar evolution, or at discovering stellar (planetary) companions around pulsating stars using timing methods, as both require very stable pulsation modes.

学科主题天文学 ; 恒星与银河系
URL标识查看原文
出版地TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
资助项目Programme National de Physique Stellaire (PNPS) of CNRS/INSU, France ; Centre National d'Etudes Spatiales (CNES, France) ; National Natural Science Foundation of China (NSFC)[11673003] ; National Basic Research Program of China (973 Program)[2014CB845700] ; NASA's Science Mission Directorate
WOS关键词WHITE-DWARF STARS ; ZZ CETI STARS ; STRUCTURAL PARAMETERS ; NONRADIAL PULSATORS ; DRIVING MECHANISM ; SPACED DATA ; ASTEROSEISMOLOGY ; DISCOVERY ; MISSION
WOS研究方向Astronomy & Astrophysics
语种英语
出版者IOP PUBLISHING LTD
WOS记录号WOS:000423444200002
资助机构Programme National de Physique Stellaire (PNPS) of CNRS/INSU, France ; Centre National d'Etudes Spatiales (CNES, France) ; National Natural Science Foundation of China (NSFC)[11673003] ; National Basic Research Program of China (973 Program)[2014CB845700] ; NASA's Science Mission Directorate
内容类型期刊论文
源URL[http://ir.ynao.ac.cn/handle/114a53/12204]  
专题云南天文台_恒星物理研究组
云南天文台_中国科学院天体结构与演化重点实验室
通讯作者Fu, Jian-Ning
作者单位1.Department of Astronomy, Beijing Normal University, Beijing 100875, People's Republic of China
2.IRAP, Université de Toulouse, CNRS, UPS, CNES, 14 avenue Edouard Belin, F-31400, Toulouse, France
3.Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
4.School of Physical Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, People's Republic of China
5.Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650216, People's Republic of China
6.Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, P.O. Box 110, Kunming 650216, People's Republic of China
推荐引用方式
GB/T 7714
Zong, Weikai,Charpinet, Stephane,Fu, Jian-Ning,et al. Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751[J]. ASTROPHYSICAL JOURNAL,2018,853(2).
APA Zong, Weikai,Charpinet, Stephane,Fu, Jian-Ning,Vauclair, Gerard,Niu, Jia-Shu,&Su J.(2018).Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751.ASTROPHYSICAL JOURNAL,853(2).
MLA Zong, Weikai,et al."Oscillation Mode Variability in Evolved Compact Pulsators from Kepler Photometry. I. The Hot B Subdwarf Star KIC 3527751".ASTROPHYSICAL JOURNAL 853.2(2018).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace