CORC  > 力学研究所  > 中国科学院力学研究所  > 国家微重力实验室
Homogeneous melting near the superheat limit of hard-sphere crystals
Wang F1; Wang ZR2; Peng Y1; Zheng ZY(郑中玉)3,4; Han YL1
刊名SOFT MATTER
2018-04-07
卷号14期号:13页码:2447-2453
ISSN号1744-683X
DOI10.1039/c7sm02291c
英文摘要

A defect-free crystal can be superheated into a metastable state above its melting point and eventually melts via homogeneous nucleation. Further increasing the temperature leads to the metastable crystal becoming unstable and melting catastrophically once beyond its superheat limit. The homogeneous melting is not well studied near the superheat limit and this limit is difficult to measure accurately, even for the simplest model of hard-sphere crystals. Here our molecular-dynamics simulations identify its superheat limit at volume fraction phi(limit) = 0.494 +/- 0.003, which is higher than the previous theoretical estimations. We found that the hard-sphere crystal at the superheat limit does not satisfy Born's melting criterion, but has a vanishing bulk modulus, i.e. a spinodal instability, which preempts other thermodynamic or mechanical instabilities. At the strong superheating regime, the nucleation deviates from the assumptions in the classical nucleation theory. In contrast to crystallization which often develops nuclei with various intermediate structures, the melting of face-centered cubic (fcc) hard-sphere crystal does not produce intermediate structures such as body-centered cubic (bcc) crystallites although bcc is more stable than fcc at the strong superheating regime. Moreover, we found that the time evolutions of the order parameters and the pressure all exhibit a compressed exponential function, in contrast to the stretched exponential relaxation of supercooled liquids. The compressed exponential functions have the same exponent, which poses a new challenge to theory.

分类号一类
WOS关键词Colloidal Crystals ; Elastic-constants ; 2 Dimensions ; Nucleation ; Entropy ; Liquid ; Instabilities ; Suspensions ; Mechanisms ; Transition
WOS研究方向Chemistry ; Materials Science ; Physics ; Polymer Science
语种英语
WOS记录号WOS:000436084300002
资助机构RGC grants(GRF16301514 ; A-HKUST616/14)
内容类型期刊论文
源URL[http://dspace.imech.ac.cn/handle/311007/77644]  
专题力学研究所_国家微重力实验室
通讯作者Han YL
作者单位1.Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Hong Kong, Peoples R China
2.Chongqing Univ, Dept Phys, Chongqing 401331, Peoples R China
3.Chinese Acad Sci, Inst Mech, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, 19 A Yuquan Rd, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Wang F,Wang ZR,Peng Y,et al. Homogeneous melting near the superheat limit of hard-sphere crystals[J]. SOFT MATTER,2018,14(13):2447-2453.
APA Wang F,Wang ZR,Peng Y,Zheng ZY,&Han YL.(2018).Homogeneous melting near the superheat limit of hard-sphere crystals.SOFT MATTER,14(13),2447-2453.
MLA Wang F,et al."Homogeneous melting near the superheat limit of hard-sphere crystals".SOFT MATTER 14.13(2018):2447-2453.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace