CORC  > 厦门大学  > 化学化工-已发表论文
Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling
Zhang, Qingye(Cent China Normal Univ, Coll Chem) ; Yang, Jiaoyan(Cent China Normal Univ, Coll Life Sci) ; Liang, Kun(Cent China Normal Univ, Coll Chem) ; Feng, Lingling(Cent China Normal Univ, Coll Chem) ; Li, Sanpin(Cent China Normal Univ, Coll Chem) ; Wan, Jian(Cent China Normal Univ, Coll Chem) ; Xu, Xin ; Xu X(徐昕) ; Yang, Guangfu(Cent China Normal Univ, Coll Chem) ; Liu, Deli(Cent China Normal Univ, Coll Life Sci) ; Yang, Shao(Cent China Normal Univ, Coll Life Sci)
2008-08
英文摘要Recently, the worldwide spread of A/H5N1 avian influenza with high virulence has highlighted the potential threat of human influenza pandemic. Tamiflu and Relenza are currently the only two anti-influenza drugs targeting the neuraminidase (NA) enzyme of human influenza virus. Reports of the emergence of drug resistance further make the development of new potent anti-influenza inhibitors a priority. The X-ray crystallographic study of A/H5N1 avian influenza NA subtypes (Russell, R. J. Nature 2006, 443, 45-49) has demonstrated that there exist two genetically distinct groups, group-1 (N1, N4, N5 and N8) and group-2 (N2, N3, N6, N7 and N9), whose conformations are substantially different. The detailed comparison of their active sites has established, heretofore, the most accurate and solid molecular basis of structure and mechanism for the development of new anti-influenza drugs. In the present Study, a three-dimensional structure of N1 subtype of human influenza type A virus (N1hA) has been generated by homology modeling using the X-ray crystallographic structure of N1 subtype of avian influenza virus (N1aA) as the template. Binding interaction analysis between the active site and its inhibitors has been performed by combining ab initio fragment molecular orbital (FMO) calculations and three-dimensional quantitative structure-activity relationship with comparative molecular field analysis (3D-QSAR CoMFA) modeling. Integrated with docking-based 3D-QSAR CoMFA modeling, molecular Surface property (electrostatic and steric) mapping and FMO pair interaction analysis, a set of new receptor-ligand binding models and bioaffinity predictive models for rational design and virtual screening of more potent inhibitors of N1hA are established. In addition, the flexibility of the loop-150 of N1hA and N1aA has been examined by a series Of Molecular dynamics simulations.; National Basic Research Program of China [2007CB116302, 2004CB719902]; Natural Science Foundation of China [20672041, 20525311, 200423002]; Program for New Century Excellent Talents in University of China [NCET-06-0673]; Science and Technology Research Project of Ministry of Education [106116]; China National Technology Platform [2005DKA64001]
语种英语
出版者AMER CHEMICAL SOC
内容类型期刊论文
源URL[http://dx.doi.org/doi:10.1021/ci800041k]  
专题化学化工-已发表论文
推荐引用方式
GB/T 7714
Zhang, Qingye,Yang, Jiaoyan,Liang, Kun,et al. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling[J],2008.
APA Zhang, Qingye.,Yang, Jiaoyan.,Liang, Kun.,Feng, Lingling.,Li, Sanpin.,...&Yang, Shao.(2008).Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling..
MLA Zhang, Qingye,et al."Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling".(2008).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace