CORC  > 清华大学
求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法
黄平 ; 许兰贵 ; 孟永钢 ; 温诗铸 ; HUANG Ping ; XU Langui ; MENG Yonggang ; WEN Shizhu
2010-06-08 ; 2010-06-08
关键词磁头/磁盘 气体润滑 超薄膜 有限差分法 Magnetic head/disk Gas lubrication Ultra-thin film Finite difference method TB383.2
其他题名EFFECTIVE FINITE DIFFERENCE METHOD TO CALCULATE LUBRICATING PERFORMANCES OF ULTRA-THIN GAS FILM OF MAGNETIC HEAD/DISK
中文摘要首先给出超薄气膜润滑的基本方程。通过对方程的分析指出,在纳米尺度下工作的磁头/磁盘具有轴承数很大和剪切流项含有压力的两个特点。提出对剪切流项进行主元迭代求解可压缩气体雷诺方程的新计算方法。在推导出该方法所用的差分公式和误差分析公式基础上,利用这些公式对双轨和多轨两种磁头在5 nm和10 nm下工作压力分布进行计算。计算过程表明该方法对超薄条件下的气膜润滑计算是有效的,该方法能够有效解决大轴承数条件下容易出现失稳的现象,避免计算中数值振荡的发生,成功地将普通有限差分算法用于求解大轴承数的气体润滑数值计算中。计算结果的误差分析表明:该算法对大轴承数气体润滑问题的收敛十分有效,并具有编程简单、计算速度快等优点。; The basic equations for ultra thin gas film lubrication are presented.Based on the analysis of the equations,two features,the air bearing number is much high and the shear flow term includes the variable pressure,are pointed out.Then, a new and effective iterative algorithm is developed to calculate the modified compressible Reynolds equation under ultra thin gas film for magnetic head/disk lubrication.With the discrete equations,the pressure distributions of two kinds of magnetic heads,two guides and multi guides,are calculated respectively under 5 and 10 nanometers.The results show that the method is effective.It solves the unstable problem at a high bearing number,and avoids the numerical oscillation during calculation using the finite difference method in numerical calculations. Finally,the error analyze is carried out to indicate the method extraordinarily valid for gas lubricate with advantages of programming simple,and the computational speed rapid.; 家重点基础研究发展计划资助项目(973计划,2003CB716205)。
语种中文 ; 中文
内容类型期刊论文
源URL[http://hdl.handle.net/123456789/49607]  
专题清华大学
推荐引用方式
GB/T 7714
黄平,许兰贵,孟永钢,等. 求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法[J],2010, 2010.
APA 黄平.,许兰贵.,孟永钢.,温诗铸.,HUANG Ping.,...&WEN Shizhu.(2010).求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法..
MLA 黄平,et al."求解磁头/磁盘超薄气膜润滑性能的有效有限差分算法".(2010).
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace