Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics
Jin, Zhenong1; Zhuang, Qianlai1,2; Dukes, Jeffrey S.3,4; He, Jin-Sheng5,6; Sokolov, Andrei P.7; Chen, Min1; Zhang, Tonglin8; Luo, Tianxiang9
刊名climatic change
2016-10-01
卷号138期号:3-4页码:617-632
英文摘要static thermal requirements (t (req) ) are widely used to model the timing of phenology, yet may significantly bias phenological projections under future warming conditions, since recent studies argue that climate warming will increase t (req) for triggering vegetation phenology. this study investigates the temporal trend and inter-annual variation of t (req) derived from satellite-based spring and autumn phenology for the alpine and temperate vegetation on the tibetan plateau from 1982 to 2011. while we detected persistent warming in both spring and autumn across this time period, we did not find a corresponding long-term increase in t (req) for most of the study area. instead, we found a substantial interannual variability of t (req) that could be largely explained by interannual variations in other climatic factors. specifically, the number of chilling days and fall temperature were robust variables for predicting the dynamics of t (req) for spring onset and autumn senescence, respectively. phenology models incorporating a dynamic t (req) algorithm performed slightly better than those with static t (req) values in reproducing phenology derived from spot-vgt ndvi data. to assess the degree to which t (req) variation affects large-scale phenology and carbon cycling projections, we compared the output from versions of the terrestrial ecosystem model that incorporated static and dynamic t (req) values in their phenology algorithms. under two contrasting future climate scenarios, the dynamic t (req) setting reduced the projected growing season length by up to 1-3 weeks by the late twenty-first century, leading to a maximum reduction of 8.9 % in annual net primary production and similar to 15 % in cumulative net ecosystem production for this region. our study reveals that temporal dynamics of t (req) meaningfully affect the carbon dynamics on the tibetan plateau, and should thus be considered in future ecosystem carbon modeling.
WOS标题词science & technology ; life sciences & biomedicine ; physical sciences
类目[WOS]environmental sciences ; meteorology & atmospheric sciences
研究领域[WOS]environmental sciences & ecology ; meteorology & atmospheric sciences
关键词[WOS]climate-change ; spring phenology ; growing-season ; green-up ; model ; precipitation ; temperatures ; adaptation ; grasslands ; feedbacks
收录类别SCI
语种英语
WOS记录号WOS:000383615200018
内容类型期刊论文
源URL[http://ir.nwipb.ac.cn/handle/363003/6422]  
专题西北高原生物研究所_中国科学院西北高原生物研究所
作者单位1.Purdue Univ, Dept Earth Atmospher & Planetary Sci, CIVIL 550 Stadium Mall Dr, W Lafayette, IN 47907 USA
2.Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
3.Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA
4.Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
5.Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810008, Peoples R China
6.Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
7.MIT, Joint Program Sci & Policy Global Change, 77 Massachusetts Ave, Cambridge, MA 02139 USA
8.Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA
9.Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Jin, Zhenong,Zhuang, Qianlai,Dukes, Jeffrey S.,et al. Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics[J]. climatic change,2016,138(3-4):617-632.
APA Jin, Zhenong.,Zhuang, Qianlai.,Dukes, Jeffrey S..,He, Jin-Sheng.,Sokolov, Andrei P..,...&Luo, Tianxiang.(2016).Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics.climatic change,138(3-4),617-632.
MLA Jin, Zhenong,et al."Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics".climatic change 138.3-4(2016):617-632.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace