题名光盘时钟信号提取的电路板实现
作者严小飞
学位类别硕士
答辩日期2008
授予单位中国科学院上海光学精密机械研究所
导师阮昊
关键词光盘存储、时钟提取、电信号检测
其他题名The Realization of Clock Recovery of Optical Disc Signal in PCB
中文摘要光盘存储技术是20世纪70年代初开始发展起来的一项高新技术。光盘存储具有存储密度高、容量大、可随机存取、保存寿命长、工作稳定可靠、轻便易携带等一系列其他记录媒体无可比拟的优点,特别适用于大数据量信息存储的需要,而且能够同时存储声音、文字、图形、图像等多种媒体的信息,从而使传统的信息存储、传输、管理和使用方式发生了根本性的变化。 光盘电信号参数抖晃(Jitter)衡量的是光盘信号脉宽特性,它反应了读出信号的时间长度特性,是盘片中信息符长度特性的直接体现。从数字通信领域来看,抖晃概念的提出是为了反应信号相位或频率相对理想时钟的偏离程度。如果数据抖晃特性差,将会导致高误码率,因此,抖晃是RF信号评价的最为重要的参数之一。而光盘信号的质量受到光盘读写过程中介质噪声、激光功率和光束宽度的波动、主轴转速的波动及码间干扰等因素的影响,对其抖晃的探测是非常有必要的,它对于数据的正确恢复产生直接影响。因此测量光盘信号脉宽特性成为光盘电信号检测仪的重要目的,而这项指标测量的首要任务就是光盘时钟信号的提取。 本论文重点是光盘时钟信号提取,同时进行了对光盘信号的恢复。文中第一章介绍了光盘存储技术、光盘信号格式和时钟提取的经典方法——锁相环电路。由于直接从光碟机中引出的光盘信号参考电平高而且信号幅度小,所以第二章对光盘RF信号电平调整处理电路设计作了系统研究,包括均衡、校正和二值化电路,通过对实际电路输出的测量说明该电路满足了系统要求。第三章是本文的重点,对二值化后光盘信号的时钟提取电路的设计进行了详细的叙述,包括帧脉冲检测电路、脉宽检测电路、脉宽调制电路和鉴相电路等,设计中既包括对电路的PSPICE仿真也包括实际电路板的制作和调试。通过对仿真结果和实际电路输出的测试验证了该设计是达到要求的。第四章提出了一种可能应用于NVD时钟提取的方案。在论文的最后部分,阐述了本论文所设计电路的优点,以及在实际中的应用价值。
英文摘要Optical disc storage technology is a high and new technology which starts to develop at the beginning of the 70’s 20th century. It has a series of merits that none of other recording media can compare, such as high storage density high capacity random storage, long storage life, steady, easy to carry and so on. It is especially suitable for the great data capacity storage and publishes. Optical disc storage can not only satisfy the need of the magnanimous information storage in information society, but also save the sound, the writing, the graph, the image and so on at the same time. Thus, it brings the fundamental change for traditional information storage, transmission, management and the use way. The parameter jitter is introduced to measure the pulse width property of the optical disc. It reflects the time length property of the read-out signal and the information mark length property of the disc sheet. The concept of jitter originated from the digital communication field which shows the departure degree of the phase or frequency of the RF signal and the ideal clock. Poor jitter property results in high bit error rate. Jitter, which is one of the most important characteristics of the RF signal, is influenced by many factors like media's noise during the writing process, laser power, fluctuation of the laser beam width, fluctuation of the spindle speed, inter-symbol interference and so on. The detection of jitter influences the signal recovery process directly. As a result, the pulse width detection of the electrical signal is the main target of the signal detection instrument of the optical discs. Clock recovery of the optical signal should be done first to achieve that goal. In this paper, we focus on the clock recovery of the optical storage signal including the signal recovery. In the first chapter, the optical storage technology, signal format and the Phase-Locked Loop (PLL) circuit for the clock recovery are introduced. For the reference voltage of the direct output signal from the optical disc player is too high and the amplitude is too small, we designed a voltage regulating circuit for the optical disc's RF signal. In the second chapter, this circuit is explained in details, which includes the balance circuit the PID circuit and the binaryzation circuit. And the output signal proved that it meets the qualification. In the third chapter, the clock recovery circuit consisting of the frame pulse generation circuit, pulse width counter circuit, PWM circuit and the phase detection circuit is designed. Simulation results, PCB layout and outputs are all introduced. Also, these results show that we have recovered the clock signal as we expected. In the fourth chapter, we put forward a possible plan for the clock recovery of the NVD signal. In the end, it indicates the strongpoint of our design and its application value of this research.
语种中文
内容类型学位论文
源URL[http://ir.siom.ac.cn/handle/181231/16384]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
严小飞. 光盘时钟信号提取的电路板实现[D]. 中国科学院上海光学精密机械研究所. 2008.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace