题名稀土掺杂碲钨酸盐玻璃光纤的光谱与中红外激光性能
作者李科峰
学位类别博士
答辩日期2011
授予单位中国科学院上海光学精密机械研究所
导师胡丽丽
关键词稀土离子 碲钨酸盐玻璃光纤 ~2 μm光纤激光 宽带发光
其他题名Spectroscopic and mid-infrared lasing performance of rare earth doped tungsten tellurite glass fiber
中文摘要本论文的主要目的是研究适用于~2 μm激光输出的玻璃和光纤,以及通信窗口宽带光放大的光纤基质材料。通过对碲酸盐玻璃成分的探索,研究出一种高玻璃化转变温度,低热膨胀系数的新型碲钨酸盐玻璃,并以此为基础制备了双包层玻璃光纤。在Tm3+单掺碲钨酸盐玻璃光纤中实现了瓦级~2 μm激光输出。 论文第一章首先综述了稀土掺杂固体激光的发展与应用,概括了碲酸盐玻璃的研究进展以及光纤激光用碲酸盐玻璃的特点,然后提出了本论文的研究内容和研究思路。 论文第二章主要介绍了实验方法、样品制备、性质测试、光谱理论计算等。 论文第三章研究了不同WO3含量对TeO2-WO3-La2O3(TWL)玻璃热学性能和光谱性质的影响。发现WO3的增加可以提高TWL玻璃的热稳定性,降低玻璃的热膨胀系数。WO3含量为30 mol%时,玻璃转变温度Tg为457 ℃,DTA曲线上无析晶开始温度Tx,玻璃的热稳定性最好,且热膨胀系数也最小,为122.4×10-7/℃。研究结果表明,相比于TeO2-ZnO基玻璃,TWL玻璃具有优良的热学性能和光谱性质,是一种实现~2.0 µm激光输出的理想玻璃基质材料。在确定了Tm3+掺杂量之后,系统研究了不同浓度Yb3+离子共掺对其红外发光和上转换发光的影响,发现Yb2O3含量为2 mol%时,1.8 μm处发光最强。研究发现Yb3+到Tm3+离子的能量传递效率达89%。Yb3+到Tm3+的能量传递系数为 3.67×10-40 cm6/s。通过计算,发现Tm3+离子在TWL玻璃中1835 nm处的最大增益系数为3.6 cm-1。 论文第四章以新型TeO2-WO3-La2O3(TWL)玻璃为基础,根据光纤相关参数,设计出光纤芯层、内包层、外包层玻璃配方,研究了大块玻璃熔制工艺,制备出光学均匀性优良的碲钨酸盐玻璃。通过研究预制棒加工及光纤拉制等多项关键技术,成功拉制出碲钨酸盐玻璃双包层光纤,其直径~220 μm,芯径~20 μm,芯层数值孔径为0.14,内包层直径~62 μm,内包层数值孔径为0.29。在1310 nm处的传输损耗<2.9 dB/m。研究发现,与块体玻璃中2微米发光相比,2微米波段的光纤光谱向长波方向移动。另外,光纤光谱的荧光半高宽FWHM比块体玻璃中小,随着泵浦功率的增加,FWHM显著减小,从~220 nm降至~160 nm。当泵浦功率达到500 mW时,~1900 nm处的发光显著增强并变窄,表明在Tm3+掺杂碲钨酸盐玻璃双包层光纤中,1900 nm处最易发生粒子数反转。激光实验中采用芯径为18 μm,长度40 cm的Tm3+掺杂碲钨酸盐玻璃双包层光纤,测得激光阈值为1.46 W,在泵浦功率6.95 W时输出功率达到1.12 W,斜率效率为~20%,对应的光~光效率大于16%。通过研究Tm3+-Ho3+离子的能量传递过程和2微米荧光光谱,分析得出Tm3+-Ho3+共掺TWL玻璃的最佳浓度为1 mol% Tm2O3,0.5 mol% Ho2O3。以此为基础制备了Tm3+-Ho3+共掺TWL玻璃光纤。与在块体玻璃中相比,光纤中Tm3+离子1.9 μm处发光强度大为减弱,由此可见在光纤中Tm3+向Ho3+进行的能量转移效率更高。随着光纤长度的增加,Tm3+离子3H43F4跃迁的1.46 μm发光逐渐增强,说明由于Ho3+离子的上转换发光,Ho3+向Tm3+的反向能量转移随光纤长度增加而增大。 论文第五章首先以新型Bi2O3-GeO2-Na2O (BGN)玻璃为基础,通过调整Er3+和Tm3+离子的掺杂浓度,获得了1300-1650 nm范围内很宽的发光峰,荧光半高宽达~160 nm。通过研究温度对宽带发光的影响,详细阐述了Er-Tm离子之间的能量传递过程。研究发现,在BGN玻璃中,Er3+-Tm3+ 能量传递效率达77%。通过研究Er3+单掺和Er3+-Tm3+共掺BGN玻璃的上转换发光,发现在Er3+-Tm3+共掺玻璃样品中,随着Tm3+离子浓度增加,绿光发光强度显著减弱,红光强度略有增强。上转换发光强度随掺杂浓度的变化,进一步证明BGN玻璃中Tm3+和Er3+离子之间存在有效的能量传递。通过研究Tm3+-Ho3+离子间的能量传递过程,在合理的掺杂浓度下(Tm2O3 1.0 mol%,Ho2O3 0.2 mol%),在TWL玻璃中实现了1600-2200 nm范围内的宽带发光,荧光半高宽达370 nm。研究发现, TWLTm2Ho玻璃中前向能量传递系数CTm-Ho约为后向能量传递系数CHo-Tm的22倍,表明Tm (3F4) 向Ho (5I7)进行了有效的能量传递。由 CTm-Tm≈2.47CTm-Ho可以推断,Tm (3F4)→Ho (5I7)之间的能量传递与Tm3+离子3F4 能级的激发迁移之间存在竞争,这也促使3F43H6(1.8 μm)和5I75I8 (2.0 μm)荧光强度易于达到平衡,从而实现1600-2200 nm的宽带发光。
英文摘要The motivation of this study is to search glass hosts suitable for ~2 μm fiber laser and broadband communication system. A novel tungsten tellurite glass double cladding fiber with high Tg and low coefficient of thermal expansion (CTE) is invented. A watt level cw fiber laser at ~2 μm is demonstrated in a 40 cm length of this fiber. Effects of WO3 on the thermal stability and spectroscopic properties of Tm3+ doped TeO2-WO3-La2O3(TWL) glasses are studied. It is found that the thermal stability of TWL glasses is improved with the increment of WO3 content. For the glass containing a WO3 of 30 mol%, the glass transition temperature (Tg) is 457 ℃, while the onset crystallization temperature (Tx) is not observed in DTA curve, and the CTE decreases to 122.4×10-7/℃ (30-300 ℃). The maximum emission cross-section of Tm3+ in TWL glass is 9.6×10-21cm2. Evaluated from the thermal and spectroscopic properties, TWL glass is a promising host material for ~2.0 µm glass laser. After fixing the optimum Tm3+ doping concentration, Yb3+ is introduced into the glass as the sensitizer. The 1.8 μm emission characteristic and energy transfer processes of Tm3+ and Yb3+ in TWL glass are analyzed, the results show that the Yb3+ ions can transfer their energy to Tm3+ ions with a large energy transfer coefficient, and a maximum efficiency of 89% is achieved. The maximum gain coefficient at around 1835 nm is calculated to be 3.6 cm-1. Based on the novel TeO2-WO3-La2O3(TWL) glass, the core, inner cladding and outer cladding glasses of the fiber are designed and fabricated with high optical quality. A Tm3+-doped tungsten tellurite glass double cladding fiber with the propagation loss < 2.9 dB/m at 1310 nm is developed. The fiber had a ~20 μm core diameter with a numerical aperture (NA) of 0.14, and a ~62 μm inner cladding diameter with a NA of 0.29. Compared to the 1.8 μm emission in bulk glass, the peak shifts to longer wavelength in the fiber due to radiation trapping where light is absorbed from the ground state to the 3F4 level and then re-emitted. It is also observed that the peak narrows in fiber with the increment of the absorbed pump power. It is important to note the emission intensity at ~1900 nm shows a significant enhancement when the absorbed pump power reaches 500 mW, which means the population reversion is easily occurred at around 1900 nm in this Tm3+ doped tungsten tellurite glass double cladding fiber. A watt level cw fiber laser at ~2 μm is demonstrated in a 40 cm length of this fiber pumped by a commercial 800 nm laser diode. The maximum output power of the fiber laser reaches 1.12 W. The slope efficiency and the optical-optical efficiency with respect to the absorbed pump power are 20% and 16%, respectively. The lasing threshold is 1.46 W and the lasing wavelength is centered at 1937 nm. In Tm3+/Ho3+ codoped TWL glass, the optimum doping concentration is Tm2O3 1.0 mol% and Ho2O3 0.5 mol%, respectively. It is found that the emission intensity of Tm3+:1.9 μm in the fiber decreased drasticly compared to the bulk glass, which indicates the higher energy transfer efficiency from Tm3+ to Ho3+ in the fiber. With the increment of the fiber length, the 1.47 μm emission increases, which means there is a back energy transfer from Ho3+ to Tm3+. Er3+-Tm3+ co-doped novel bismuthate glasses (Bi2O3-GeO2-Na2O) with different [Tm]/[Er] ratios have been synthesized and a fairly flat and broad emission covering the wavelength range of 1300-1650 nm corresponding to the 3H43F4 transition of Tm3+ and 4I13/24I15/2 transition of Er3+ can be observed with the excitation of 800 nm laser diode. A full width at half maximum (FWHM) of ~160 nm is obtained by codoping the glass with 1.0 wt% of Tm2O3 and 0.3 wt% of Er2O3. The energy transfer processes between Tm3+ and Er3+ in BGN glasses are analyzed in detail. The temperature dependence of the broadband emission spectra in Er3+-Tm3+ co-doped BGN glass is also studied, which is helpful to understand the energy transfer processes. For the Er3+ single doped BGN glass, the excitation from 4I15/2 to 4I9/2 generates upconversion fluorescence 2H11/24I15/2 (525 nm), 4S3/24I15/2 (545 nm), and 4F9/24I15/2 (665 nm) due to the excited state absorption (ESA) and the energy transfer upconversion (ETU) processes. For the Er3+/Tm3+ co-doped glasses, the intensities of green emissions reduce significantly as Tm3+ concentration increases, while the intensity of red emission increases slightly. The intensities of green and red emissions affected via the addition of Tm3+ into Er3+ doped BGN glasses, which indicates the presence of efficient energy transfer between both ions. The energy transfer efficiency from Er3+ to Tm3+ is 77%. The infrared emission of Tm3+-Ho3+ codoped TWL glass shows a broad and flat luminescence in the range of 1600-2200 nm corresponding to the 3F43H6 transition of Tm3+ and 5I75I8 transition of Ho3+. The FWHM and the relative intensity of the 1.8 μm and 2.0 μm emissions depend on the [Tm]/[Ho] concentration ratio. A FWHM of ~370 nm is abserved by codoping the TWL glass with 1 mol% Tm2O3 and 0.2 mol% Ho2O3. The energy transfer processes of Tm3+ and Ho3+ are analyzed in detail. The forward energy transfer CTm-Ho is about 22 times larger than the backward energy transfer CHo-Tm, a large ratio of CTm-Ho/CHo-Tm indicates that energy transfer from Tm (3F4) to Ho (5I7) in TWLTm2Ho is quite efficient. A competition between the Tm(3F4)→Ho(5I7) energy transfer and the migration of excitation through 3F4 states is highly expected because of our calculation that CTm-Tm≈2.47CTm-Ho, which makes the intensity balance between the 3F43H6 (1.8 μm) and 5I75I8 (2.0 μm) transitions happened easily.
语种中文
内容类型学位论文
源URL[http://ir.siom.ac.cn/handle/181231/15673]  
专题上海光学精密机械研究所_学位论文
推荐引用方式
GB/T 7714
李科峰. 稀土掺杂碲钨酸盐玻璃光纤的光谱与中红外激光性能[D]. 中国科学院上海光学精密机械研究所. 2011.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace