题名用于潮湿环境和水下粘接的仿贻贝黏合剂的合成及性能研究
作者李爱磊
学位类别硕士
答辩日期2015-05
授予单位中国科学院大学
授予地点北京
导师万晓波
关键词仿贻贝黏合剂 聚氧杂环丁烷 聚乙烯吡咯烷酮 潮湿环境和水下粘接
学位专业材料工程
中文摘要黏合剂在我们的日常生活中有着广泛的应用,但是目前大多数商品化的黏合剂都面临着一个问题,那就是在潮湿环境或者水下不能实现有效的粘接。在如何解决这个问题上,海洋生物贻贝给了我们灵感。贻贝可以分泌一种蛋白质基黏合剂,它可以在水下快速凝固并牢牢附着在岩石上,足以抵抗海水的冲击。研究发现贻贝足丝蛋白中含有较多的3,4-二羟基苯丙氨酸(DOPA)残基,正是其中的邻苯二酚基团可以通过与金属离子的配位以及自身的氧化交联而赋予贻贝水下高强度的黏附性能,甚至可以黏附到表面能很低的聚四氟乙烯上。受贻贝的启发,研究人员开发出了多种基于邻苯二酚基团的仿生黏合剂,在干态条件下,有的黏合剂的粘接强度甚至可以达到10 MPa以上,但是实现在潮湿环境以及水下的高强度粘接仍然具有挑战性。 本论文旨在对仿贻贝黏合剂进行进一步的研究,以期改善其在潮湿环境以及水下的粘接性能。一是在课题组原有工作的基础上,合成了基于聚氧杂环丁烷主链的能够在潮湿环境下粘接应用的仿生黏合剂。借鉴沙堡虫分泌的蛋白黏合剂的组成成分,我们同时将双磷酸基团和邻苯二酚基团通过点击化学的方法引入聚合物主链,得到了水溶性的黏合剂。我们对双磷酸基团对黏合剂粘接强度和水溶性的影响进行了研究,发现相比于单磷酸基团,双磷酸基团不仅可以与三价铁离子作用提高黏合剂的粘接强度,而且可以保证黏合剂的水溶性。在最优条件下,此仿贻贝黏合剂的粘接强度可以和天然的沙堡虫分泌的蛋白黏合剂的粘接强度相媲美。 另一种是基于聚乙烯吡咯烷酮主链的可以实现水下粘接的仿贻贝黏合剂。聚乙烯吡咯烷酮因为其主链的极性以及内酰胺结构与天然的贻贝足丝蛋白的多肽主链有一定的类似性,因此可以更好地模拟贻贝足丝蛋白的结构。将邻苯二酚基团通过点击化学的方法接枝到聚乙烯吡咯烷酮主链上得到了相应的仿贻贝黏合剂,该黏合剂可实现对玻璃基材的水下粘接,而且比相同条件下干态条件下的粘接强度更高,而在海水下的粘接强度能进一步提高。我们进而研究了铁离子用量、黏合剂的分子量和邻苯二酚含量对粘接性能的影响,通过优化条件,在水下的粘接强度最高可达1.6 MPa。我们认为除了邻苯二酚基团,聚合物的分子主链结构对黏合剂的水下粘接性能也有着重要的影响,而这一点在之前的研究中被忽略了。这些研究对于开发新型仿生黏合剂具有一定的借鉴意义。
英文摘要Adhesives are widely used in our daily life, but most of the commercially available adhesives fail to work in humid or underwater conditions. To solve this problem, scientists get inspirations from marine mussels. Mussel secretes protein-based adhesives that can secure itself to wet rocks tightly, enough to resist the waves. Studies have revealed that mussel foot proteins are rich in 3,4-dihydroxyphenylalanine (DOPA) residues, which accounts for its strong underwater adhesion via complexation with ions and cross-linking. Inspired by these facts, many biomimetic adhesives have been exploited, some of which can even achieve a bonding strength more than ten MPa under dry conditions. However, strong adhesion in humid or underwater conditions is still challenging. This study is aimed to improve the adhesive properties of mussel-inspired biomimetic adhesives at humid/underwater conditions. Two kinds of biomimetic adhesives were designed, one of which adopted polyoxetane backbone reported in our previous work and by grafting bis-phosphoric acid groups together with catechol moieties, bonding at humid conditions was realized. Such design is inspired by the proteinaceous glues secreted by both sandcastle worm and mussel. The influence of bis-phosphoric acid groups on the outcome of the solubility and adhesive property of the adhesive is investigated, which shows that compared with mono-phosphoric acid groups, bis-phosphoric acid groups not only can interact with ferric ions, but also guarantee the solubility of the synthetic adhesive. Under the optimal conditions the bonding strength of this biomimetic adhesive is comparable to that of natural sandcastle worm glue. The other one is based on polyvinylpyrrolidone (PVP) backbone, which realize underwater bonding. PVP shows some similarity with the peptide mainchain of mussel foot proteins because of its polar backbone and lactam bond. By further grafting catechol moieties onto PVP backbone via click reaction, strong underwater bonding was realized. The impacts of the amount of ferric ions, molecular weight of the synthetic adhesive and the content of catechol grafted on the overall performance of the adhesive were investigated. This synthetic adhesive shows much higher bonding strength at underwater conditions than at dry conditions, which was further improved at under-seawater conditions. We reasoned that besides catechol moieties, the structure and property of backbone also play an important role in the bonding performance of the biomimetic synthetic adhesives, which has been overlooked before. These findings might cast light on the design of new biomimetic adhesives.
语种中文
学科主题材料工程
公开日期2017-07-01
内容类型学位论文
源URL[http://ir.qibebt.ac.cn/handle/337004/8099]  
专题青岛生物能源与过程研究所_生物基及仿生高分子材料团队
作者单位中国科学院青岛生物能源与过程研究所
推荐引用方式
GB/T 7714
李爱磊. 用于潮湿环境和水下粘接的仿贻贝黏合剂的合成及性能研究[D]. 北京. 中国科学院大学. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace