Analyze and experiment on AC magnetic field's effect to fiber optic gyroscopes in compact stabilization control systems
Zhang, Chao1,2; Mao, Yao1,2; Tian, Jing1,2; Li, Zhijun1,2
2015
会议名称Proceedings of SPIE - The International Society for Optical Engineering
会议日期2015
卷号9679
页码96791B
中文摘要Fiber optic gyroscopes (FOG) are getting more and more attention in areas such as stabilization control systems as they are all solid state and have a wide bandwidth. In stabilization systems that require wide bandwidth control, motors are usually used as actuating mechanism for active disturbance restrain. Voice coil motors (VCMs) are usually used in compact stabilization systems that require large torque and fast response. However, AC magnetic field, which can affect the output of FOG due to Faraday effect, will be generated during operation of VCMs. The frequency range affected by the AC magnetic field to the FOG's output is the same as VCMs drive signal frequency range, which is also exactly the stabilization system's working range. Therefore the effect of the AC magnetic field to FOGs must be evaluated to verify the feasibility of a stable system design that uses both FOGs and VCMs. In this article, the basic structure and operating principle of stabilization system is introduced. The influence of AC magnetic field to FOG is theoretically analyzed. The magnetic field generated by VCMs is numerically simulated based on the theory deduction of the magnetic field near energized wires. To verify the influence of the VCM generated magnetic field to the FOGs in practical designs, a simplified random fiber coil model is built for it's hard to accurately test the exact polarize axis's twisting rate in a fiber coil. The influence to the FOG's output of different random coil model is simulated and the result shows a same trend that the influence of the VCM's magnetic field to the FOG is reduced as the distance between the VCM and the FOG increasing. The influence of a VCM to a FOG with the same parameters is experimentally tested. In the Fourier transformed FOG data the same frequency point as the VCM drive signal frequency can be read. The result fit simulated result that as the distance increases, the influence decreases. The amplitude of the frequency point is just above the average noise spectrum amplitude of the tested FOG and that indicates the influence of the particular VCM's AC magnetic field to the FOG's output is negligible in this design. The feasibility of the future design can also be tested in the same way as the article introduced. © 2015 SPIE.
英文摘要Fiber optic gyroscopes (FOG) are getting more and more attention in areas such as stabilization control systems as they are all solid state and have a wide bandwidth. In stabilization systems that require wide bandwidth control, motors are usually used as actuating mechanism for active disturbance restrain. Voice coil motors (VCMs) are usually used in compact stabilization systems that require large torque and fast response. However, AC magnetic field, which can affect the output of FOG due to Faraday effect, will be generated during operation of VCMs. The frequency range affected by the AC magnetic field to the FOG's output is the same as VCMs drive signal frequency range, which is also exactly the stabilization system's working range. Therefore the effect of the AC magnetic field to FOGs must be evaluated to verify the feasibility of a stable system design that uses both FOGs and VCMs. In this article, the basic structure and operating principle of stabilization system is introduced. The influence of AC magnetic field to FOG is theoretically analyzed. The magnetic field generated by VCMs is numerically simulated based on the theory deduction of the magnetic field near energized wires. To verify the influence of the VCM generated magnetic field to the FOGs in practical designs, a simplified random fiber coil model is built for it's hard to accurately test the exact polarize axis's twisting rate in a fiber coil. The influence to the FOG's output of different random coil model is simulated and the result shows a same trend that the influence of the VCM's magnetic field to the FOG is reduced as the distance between the VCM and the FOG increasing. The influence of a VCM to a FOG with the same parameters is experimentally tested. In the Fourier transformed FOG data the same frequency point as the VCM drive signal frequency can be read. The result fit simulated result that as the distance increases, the influence decreases. The amplitude of the frequency point is just above the average noise spectrum amplitude of the tested FOG and that indicates the influence of the particular VCM's AC magnetic field to the FOG's output is negligible in this design. The feasibility of the future design can also be tested in the same way as the article introduced. © 2015 SPIE.
收录类别SCI ; EI
学科主题Bandwidth - Control systems - Design - Digital storage - Electric machine control - Fiber optic sensors - Fiber optics - Fibers - Frequency shift keying - Magnetic fields - Magnetism - Optical fibers - Position control - Signal processing - Single mode fibers - Stabilization
语种英语
ISSN号0277-786X
内容类型会议论文
源URL[http://ir.ioe.ac.cn/handle/181551/7429]  
专题光电技术研究所_光电工程总体研究室(一室)
作者单位1.Institute of Optics and Electronics, Chinese Academy of Science, Chengdu, China
2.Key Lab of Optical Engineering, Chinese Academy of Sciences, Chengdu, China
推荐引用方式
GB/T 7714
Zhang, Chao,Mao, Yao,Tian, Jing,et al. Analyze and experiment on AC magnetic field's effect to fiber optic gyroscopes in compact stabilization control systems[C]. 见:Proceedings of SPIE - The International Society for Optical Engineering. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace