CORC  > 电工研究所  > 其他部门  > 博士学位论文
题名介质阻挡放电特性及高频高压放电电源技术研究; 介质阻挡放电特性及高频高压放电电源技术研究
作者1邵建设,电工研究所
学位类别博士
答辩日期2007-06-05
授予单位中国科学院电工研究所
导师1严萍,电工研究所
关键词介质阻挡放电,放电特性,负载特性,高频高压电源,直流调功,频率跟踪,频谱分析,同轴电极介质阻挡放电,放电均匀性,纳米材料有机包袱,针板电极介质阻挡放电,漏液检测,DSP,最大谐振电流跟踪 DBD, discharge characteristic, load characteristic, high frequency and high voltage power supply, PAM, frequency tracing, frequency analysis, cylindrical electrode DBD, discharge uniformity, surface modification of nano-material, needle-to-plan electrode
其他题名介质阻挡放电特性及高频高压放电电源技术研究
中文摘要介质阻挡放电能够在大气压条件下获得比较稳定的放电,因而它是产生非平衡态的低温等离子体的一种很有效的方法。近年来,介质阻挡放电已经在越来越多的工程领域获得应用,并逐渐成为气体放电领域的一个研究热点。目前,国内外的关于介质阻挡放电的研究,往往把介质阻挡放电的放电特性和放电电源的供电特性孤立起来进行研究,往往造成理论分析和实验的结果带有片面性,其不足之处主要表现在,关于电源的控制方法、电源的相关的电路参数与负载特性、放电特性的相互影响的研究还不够深入。 采用直流调功(Pulse Amplitude Modulation,简称为PAM )的控制方式的高频高压放电电源,其优点在于能够在大范围内进行输出电压的大小和频率的调整,并且适宜于在大功率的应用场合使用。因此,在本文的研究中,将基于PAM控制方式的高频高压放电电源的控制方法、电源的相关电路参数与负载特性、放电特性的关系结合起,展开了如下所述的相关研究: 首先,对介质阻挡放电类负载的集中参数电路模型和放电的物理现象的对应关系进行了论述,并以介质阻挡放电的集中参数模型为基础,考虑了高频变压器的分布电路参数后,将谐振回路等效为一个正弦波电流源,建立了基于PAM控制方式的电源和负载的等效电路模型。经过分析和计算得出了负载电压、放电电流、介质层电压、气体间隙电压的计算公式,并进一步研究了负载电压和放电电流的波形特点,还得出了负载的动态电阻、基波负载电压、基波阻抗、等效的平均电容和负载功率的计算公式,基于这些公式绘制了相关电路变量的三维曲线图。 然后,建立了基于PAM控制方式的高频高压放电电源和负载的闭环控制的仿真电路模型。集中参数的负载的等效电路模型中,引入了气体间隙击穿后的放电回路的阻抗。仿真中还考虑高频变压器的分布电路参数对放电的影响。仿真研究了微放电电流特点与电源的电路控制、电源的电路参数之间的关系。对微放电电流脉冲的特点进行了了定量的描述。使用频谱分析的方法来讨论微放电电流脉冲特点的变化规律。对微放电电流脉冲的形成原因给出了电路上的合理的解释。 其次,进行了基于PAM控制方式的高频高压电源作用下的2种常用的介质阻挡放电类负载(同轴电极和平板电极等离子体反应器)的放电特性的实验研究。研究了这2种常见的介质阻挡放电类负载的放电特性、微放电电流脉冲的特点、放电的均匀性和外加电源电压的关系,以及负载电压和放电电流的特点。对放电电流波形进行了频谱分析,研究了微放电电流波形特点和放电特性的关系。实验研究的结果,验证了理论分析、计算和仿真的结论的正确性。 最后,对基于PAM控制方式的高频高压放电电源技术进行了研究。研究了谐振状态下的负载功率、电源效率与介质阻挡放电负载的等效阻抗的关系。研制出了2种高频高压电源及放电反应器,并它们分别用于纳米材料的有机包袱的科研中、塑料容器的漏液检测的工业生产线上。用于纳米材料的有机包袱的放电装置中,使用同轴结构的介质阻挡放电反应器,放电电源采取手动调整开关频率来跟踪谐振频率的控制方法。用于塑料容器的漏液检测的放电装置中,使用针板电极的介质阻挡放电反应器,放电电源的开关频率固定不变。还研究了基于DSP(Digital Signal Processor)的高频高压放电电源的软件和硬件电路的实现方法。利用DSP的强大的编程功能,智能跟踪谐振电流的最大值,实现了开关频率对谐振频率的大范围的跟踪。 总的说来,本文以基于PAM控制方式的高频高压电源作用下的介质阻挡放电的负载特性和放电特性为研究对象,对介质阻挡放电电源的电路控制、电路参数与介质阻挡放电的负载特性、放电特性之间的关系进行了深入的理论和实验研究。研究成果可以为有效产生并可靠控制大气压下空气中通过均匀的介质阻挡放电,产生功率密度均匀的工业等离子体,提供一些指导原则和技术方法,还可以用于指导高频高压放电电源的设计和制造。其中,针板电极的介质阻挡放电在塑料液体容器的漏液检测中的工业应用,为开拓介质阻挡放电在工业中的应用领域提供了新的思路。 Because a stable dielectric barrier discharge (DBD) can be fromed in the amospheric pressure air, so DBD is becoming a very effective way to produce low-temperature nonequilibrium plasmas. In the recent years, DBD is used in the more and more industrial application fields, and is gradually becoming a hotspot in the research field of gas discharge. Power supply and discharge characteristic of DBD are always studied independently in the research of DBD nowadays, so the theoretical analyses and experimental results about the study of DBD are always not so satisfied. Thus the studies on the relations between the power supply and discharge characteristic of DBD are urgently needed. The DBD power supply, which uses the pulse amplitude modulation (PAM) control scheme, can output an adjustable high voltage of variable amplitude or variable frequency in a wide range independently, and it is always used in the application field which is extremely in the need of high power DDB power supply. Thus the studies on DBD in this paper are emphasizing on the interrelations between the control schemes, circuit parameters of the DBD power supply which uses PAM control scheme and the load characteristic, the discharge characteristic of the DBD load, the following are the details: Firstly, the correlation between the concentrative circuit model of DBD load and the physical phenomenon of DBD is discussed. On the base of the concentrative circuit model of DBD, and also considering the distributing parameters of the high frequency transformer, a circuit model about the DBD power supply based on the PAM control scheme and DBD load is built. The resonant tank of the DBD power supply in the circuit model is modeled equivalently to a sinusoidal current source. The formulas of load voltage, discharge current, dielectric barrier voltage and discharge gap voltage are given out through the analyses of the circuit model. Also the characteristics of the waveforms of load voltage and discharge current are studied. Finally, the formulas of the load circuit parameters including dynamic resistor, fundamental load voltage, fundamental resistance, equivalent average capacitance and load power are also studied. Secondly, a simulation circuit model with a close-loop frequency control about the DBD power supply based on the PAM control scheme and its DBD load is built. In the DBD load model, resistance after the occurrence of the gas discharge breakdown is considered. The correlation between the control scheme of the DBD power supply, the circuit parameters of the DBD power supply and the micro-discharge current pulses is simulated. A reasonable explanation to the formation of the micro-discharge current pulses is given out. The characteristics of the micro-discharge current pulses are also described numerically. Frequency analysis is used to study on the changing principle of the micro-discharge current when the load power is adjusted. Thirdly, using the high frequency and high voltage power supply based on the PAM control scheme, experimental researches on the discharge characteristics of the two kinds of DBD reactor, cylindrical discharge electrode reactor and planar discharge electrode reactor, are carried out. The relations between the discharge characteristics of the two reactors, the characteristic of the micro-discharge current pulses, uniformity of discharge and the output voltage of the DBD power supply are studied. Frequency analysis to waveform of the discharge current shows that the relation between characteristics of the micro-discharge current pulses and the discharge characteristics. Experimental results verify the rationality of the results of theoretical analyses mentioned above. Finally, research works have been done to the control and manufacture technology of the high frequency and high voltage DBD power supply based on the PAM control scheme. Firstly, the relations between the DBD load equivalent resistance and the load power, DBD power efficiency is carefully studied. Two kinds of high frequency and high voltage power supply are developed, one is used in the research work of surface modification of a kind of nano-material, and another is used to the leakage detection of some kinds of plastic bottles. In the discharge device of the surface modification of the nano-material, a cylindrical electrode DBD reactor is used, and the inverter’s switching frequency of the power supply used is adjusted manually and made equal to the resonant frequency of the resonant tank. In the discharge device of the leakage detection of the plastic bottle, a needle-to-plan electrode DBD reactor is used, and the inverter’s switching frequency of the power supply used is fixed all the time. And also a high frequency and high voltage power supply based on DSP (Digital Signal Processor) is studied and manufactured. Making use of powerfully function of the programming of DSP, the maximal value of the resonant current is tracked intelligently, so the switching frequency can track the change of the resonant frequency in a wide range. In conclusion, in this paper, the main subject is the DBD load characteristic and discharge characteristic powered by the high frequency and high voltage power supply based PAM control scheme. A deep theoretical and experimental study on the relations between the power control scheme, circuit parameters and DBD load characteristic, discharge characteristic have been carried out. The research achievement can provide some guidances and technologies for effectively generating and controlling DBD in atmospheric pressure air and thus producing the more uniform industrial plasmas, and also for the manufacture of high frequency and high voltage power supply.
语种中文
公开日期2010-10-18
页码151
分类号TM85
内容类型学位论文
源URL[http://ir.iee.ac.cn/handle/311042/6720]  
专题电工研究所_其他部门_其他部门_博士学位论文
推荐引用方式
GB/T 7714
1邵建设,电工研究所. 介质阻挡放电特性及高频高压放电电源技术研究, 介质阻挡放电特性及高频高压放电电源技术研究[D]. 中国科学院电工研究所. 2007.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace