题名碳卫星有效载荷热控制技术
作者李毅
学位类别博士
答辩日期2015-05
授予单位中国科学院大学
导师吴清文
关键词碳卫星有效载荷 CO2探测仪 云和气溶胶探测仪 热设计 热分析
其他题名Thermal Control Technique of Carbon Satellite Payload
学位专业机械制造及其自动化
中文摘要人类工业革命后,由于大量地砍伐森林和大量的化石原料被燃烧,大气中CO2 的含量迅速增加,所带来的温室效应越来越严重。此前人们对于CO2 的监测仅局限于地面。由于观测的局限性人们对于CO2 的全球演变知之甚少,因此CO2 的空间监测引起了世界各国的重视。CO2 的空间监测是通过光学仪器进行的,而温度直接关系到光学仪器的成像质量。因此有必要对于探测仪热控系统的设计进行研究。碳卫星有效载荷,作为我国首个温室气体探测仪,其姿态复杂、内热源功耗大且工作时间长,给热设计提出了新的挑战。探测仪观测模式多,单轨姿态变化多,热设计工况难以确定;探测仪内部的红外探测组件有制冷机,其散热困难,若热设计不当将会影响整个探测仪的工作。如何利用成熟的热控技术,解决温室气体探测仪的热控难题,满足其正常工作的热控要求等研究内容,是本文的主要内容。 论文概述了温室气体光学遥感器的研究现状,总结了其工作特点和热设计特点,介绍了国外温室气体光学遥感器的热设计方案。对我国的碳卫星有效载荷的结构、工作模式进行了分析,并总结了其热控系统的难点、重点问题。通过对CO2 探测仪和云和气溶胶探测仪两部分的热光学分析,得到了两遥感器的热控指标,结合两探测仪的结构将热控指标分解至两探测仪各个部分。在探测仪详细热设计部分,首先对CO2 探测仪的安装面、主体、入光口、光学元件、探测器组件、电控箱进行了详细的热设计,同时对云和气溶胶探测 仪的主框架、镜头组件、遮光罩组件、线路板组件、焦面组件论文进行了详细热设计。然后根据探测仪的姿态和工作模式,确定高、低温工况,并进行分析计算,从而确定了散热面面积和补偿加热功耗。热分析结果表明低温工况时CO2探测仪的光学元件温度为18.4℃~21.8℃,探测器组件的温度为18.5℃~25.5℃,云和气溶胶探测仪的物镜组件温度为19℃~23℃,高温工况时CO2 探测仪的光学元件温度为18.6℃~22.0℃,探测器组件的温度为20.6℃~25.7℃,云和气溶胶探测仪的物镜组件温度为19℃~23℃,满足探测仪工作的温度要求。此外,还针对云和气溶胶探测仪的遮光罩进行了方案优选。通过对于某类型的遮光罩热分析研究,得到了其等效长径比为1.7 为最优。再利用云和气溶胶的遮光罩进行了试验验证,得到了其寻优结果。 最后本文论述了碳卫星有效载荷的热试验。热平衡试验结果表明低温工况CO2 探测仪的主体温度为16.4℃~19.6℃,探测器的温度为15.1℃~16.4℃,云和气溶胶探测仪的镜头组件温度为16.4℃~18.9℃,高温工况CO2 探测仪的主体温度为17.8℃~19.6℃,探测器的温度为18.5℃~23.3℃,云和气溶胶探测仪的镜头组件温度为18.9℃~19.9℃,满足热控指标。因此热分析数据有效可靠,热设计方案合理可行。
英文摘要Since industrial revolution, extensive deforestation and combustion of a large number of fossil raw materials have become serious. The content of carbon dioxide in the air is increased rapidly. So the greenhouse effect becomes more and more grievous. Previously, the monitoring of carbon dioxide is limited to the ground. Because of the limitation, the carbon dioxide global evolution are poorly understood, the space monitoring for carbon dioxide is paid attention all over the world. It is carried out with space optical instrument. The temperature of the instruments is directly related to its imaging quality. Thus, it is necessary to study the design of the detector’s thermal control system. Carbon satellite payload is first Chinese greenhouse gas detector. Its pose is complex and internal heat loads are pretty much and its working time is long.All of the factors put forward new challenges to the thermal design. The observed pattern of the detector is multiple and the change of monorail attitude is complicated, so it is difficult to determine the thermal design conditions. There are refrigerating machines for the infrared detector and its radiating is difficult because of the limited surface. The entire work of the detector will be affected if the thermal design is improper. The content of the thesis is how to use sophisticated thermal design technology to solve thermal design problems of the greenhouse gas detector in order to satisfy its working thermal control requirement. The present research status of optical remote sensor to detect greenhouse gasis summarized.The working characteristics and thermal design features of the greenhouse gas optical remote sensor are summarized. Besides, the thermal design scheme of foreign greenhouse gas optical remote sensor was introduced.The structure and working modes of China’s greenhouse gas optical remote sensor were analyzed. The difficulties and keys of the thermal control system are also stated. The thermal design targets for the Carbon Dioxide Detection Instrument(CDDI) and the Cloud And Aerosol Polarization Imager(CAPI) were studied with their thermal-optical analysis. The targets were decomposed to the parts of the sensors according to the structure. A concrete thermal design for the installed surface, main body, light entering, optical elements, detectors and electric cabinet of the carbon dioxide detection instrument was carried on in the thermal design part. Another thermal design for the main frame, lens components, baffles’ components, circuit boards components and focal planes components of the CAPI is also carried on. The hot case and cold case conditions are defined according to the instrument’s attitude and working modes. In order to define the radiating area and heating power, the work conditions were analyzed and calculated. The thermal analysis results indicated that in the cold case the temperature of the optical elements on the CDDI is 18.4 ℃ ~21.8 ℃ and the temperature of detector components is 18.5 ℃ ~25.5 ℃ and in the hot case the temperature of the optical elements on the CDDI is 18.6 ℃ ~22.0 ℃ and the temperature of detector’s components is 20.6 ℃ ~25.7 ℃ .It meets the target. The results also indicated that in the cold case the temperature of CAPI’s objective lens assembly is 19℃~23℃ and in the hot case its temperature is 19℃~23℃. That also meets the target. In addition, the baffle structure scheme of the CAPI is optimized. According to the research on a certain baffle, it is concluded that the length of the baffle is best at 1.7 times of its equivalent diameter. Then the experiment of the CAPI’s baffle is carried out and its optimization result is acquired. Finally, the thermal test for the carbon satellite payloads is discussed. The results of the thermal balance test indicate that the temperature of the main body inthe CDDI in the cold case is 16.4℃~19.6℃ and its detector’s temperature is 15.1℃~16.4℃ and the temperature of the main body in the CDDI in the hot case is 17.8℃~19.6℃ and the detector’s temperature is 18.5℃~23.3℃. Meanwhile, in the coldcase the temperature of the CAPI’s objective lens assembly is 16.4℃~18.9℃ and inthe hot case its temperature is 18.9℃~19.9℃. So the thermal design targets are met.A conclusion could be forward that thermal analysis data is effective and reliable andthe thermal design is reasonable and feasible.
公开日期2015-12-24
内容类型学位论文
源URL[http://ir.ciomp.ac.cn/handle/181722/48868]  
专题长春光学精密机械与物理研究所_中科院长春光机所知识产出
推荐引用方式
GB/T 7714
李毅. 碳卫星有效载荷热控制技术[D]. 中国科学院大学. 2015.
个性服务
查看访问统计
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


©版权所有 ©2017 CSpace - Powered by CSpace